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The Stewartson-Warn-Warn (SWW) solution for the time evolution of an inviscid, 
nonlinear Rossby-wave critical layer, which predicts that the critical layer will 
alternate between absorbing and over-reflecting states as time goes on, is shown to 
be hydrodynamically unstable. The instability is a two-dimensional shear instability, 
owing its existence to a local reversal of the cross-stream absolute vorticity gradient 
within the long, thin Kelvin cat’s eyes of the SWW streamline pattern. The unstable 
condition first develops while the critical layer is still an absorber, well before the 
first over-reflecting stage is reached. The exponentially growing modes have a 
two-scale cross-stream structure like that of the basic SWW solution. They are found 
analytically using the method of matched asymptotic expansions, enabling the 
problem to be reduced to a transcendental equation for the complex eigenvalue. 
Growth rates are of the order of the inner vorticity scale Sq, i.e. the initial absolute 
vorticity gradient dq,/dy times the critical-layer width scale. This is much faster than 
the time evolution of the SWW solution itself, albeit much slower than the shear rate 
du,/dy of the basic flow. Nonlinear saturation of the growing instability is expected 
to take place in a central region of width comparable to the width of the SWW cat’s-eye 
pattern, probably leading to chaotic motion there, with very large ‘eddy-viscosity ’ 
values. Those values correspond to critical-layer Reynolds numbers A-’ Q 1, sug- 
gesting that for most initial conditions the time evolution of the critical layer will 
depart drastically from that predicted by the SWW solution. A companion paper 
(Haynes 1985) establishes that the instability can, indeed, grow to large enough 
amplitudes for this to happen. 

The simplest way in which the instability could affect the time evolution of the 
critical layer would be to prevent or reduce the oscillations between over-reflecting 
and absorbing states which, according to the SWW solution, follow the first onset 
of perfect reflection. The possibility that absorption (or over-reflection) might be 
prolonged indefinitely is ruled out, in many cases of interest (even if the ‘eddy 
viscosity’ is large), by the existence of a rigorous, general upper bound on the 
magnitude of the time-integrated absorptivity a(t). The bound is uniformly valid for 
all time t .  The absorptivity a(t) is defined aa the integral over all past t of the jump 
in the wave-induced Reynolds stress across the critical layer. In typical cases the 
bound implies that, no matter how large t may become, I a(t) I cannot greatly exceed 
the rate of absorption predicted by linear theory multiplied by the timescale on which 
linear theory breaks down, say the time for the cat’s-eye flow to twist up the absolute 
vorticity contours by about half a turn. An alternative statement is that I a(t) I cannot 
greatly exceed the initial absolute vorticity gradient dq,/dy times the cube of the 

t Present affiliation: Robert Hooke Institute for Atmospheric Research, Dept. of Atmospheric 
Physics, Clarendon Laboratory, Oxford OX1 3PU. 
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widthscale of the critical layer. In  typical cases, therefore, a brief answer to the 
question posed in the title is that the critical layer absorbs at first, at a rate cc dq,/dy, 
whereas after linear theory breaks down the critical layer becomes a perfect reflector 
in the long-time average. If absolute vorticity gradients vanish throughout the 
critical layer then the bound is zero, implying perfect reflection for all t .  

The general conditions for the bound to apply are that the wave amplitude and 
critical-layer width are uniformly bounded for all t ,  the motion is two-dimensional, 
and vorticity is neither created nor destroyed within the critical layer, nor transported 
into or out of it by diffusion, by advection, or by other means. Vorticity may, 
however, be diffused or turbulently transported within the critical layer, provided 
that the region within which the transport acts is of bounded width and the range of 
values of vorticity within that region remains bounded. There are no other restrictions 
on wave amplitude, none on wavelength, and no assumptions about flow details 
within the critical layer nor about the initial vorticity profile qo(y) ,  apart from an 
assumption that qo(y)  has singularities no worse than a finite number of jump 
discontinuities. The proof, in its most general form, makes use of anew finite-amplitude 
conservation theorem for disturbances to parallel shear flows, generalizing the 
classical results of Taylor, Eliassen & Palm, and others. 

1. Introduction and rbsumb 
1.1. Background 

There has been a continuing debate in recent years about what happens when 
monochromatic Rossby waves are incident on a critical line in a shear flow, where 
phase speed matches mean-flow speed. A basic question, posed epigrammatically, is 
whether and when the nonlinear ‘critical layer ’ surrounding the critical line acts as 
an absorber, a reflector, or an over-reflector. 

The problem is important in a wider context than the meteorological one which 
directly motivates it (e.g. Tung & Lindzen 1979a, b;  Tung 1979; Nigam & Held 1983 
and references), since closely related questions arise whenever stable or unstable 
disturbances to shear flows are of interest, these disturbances having coherent 
structures and definite phase speeds. Disturbances to the jets and shear layers 
encountered in aerodynamics are cases in point. As was noted by Stewartson (1978), 
the case of two-dimensional Rossby waves in constant shear provides the simplest 
context in which one of the central theoretical problems can be studied in detail, 
namely the onset of nonlinear effects in a time-dependent critical layer and the 
consequent changes in the matching conditions across the layer. For surveys of the 
topic in general the reader may consult the reviews by Maslowe (1981) and Stewartson 
(1981), and for some very recent meteorological developments the papers by Al-Ajmi 
et al. (1985), Clough et al. (1985), Leovy et al. (1985), Hoskins et al. (1985), and 
McIntyre & Palmer (1983, 1984). The last-named group of papers presents direct 
evidence, from satellite and other observations, indicating that effects of the general 
kind modelled inter alia by the time-dependent theory of nonlinear critical layers 
play an essential role in the large-scale dynamics of the Earth’s atmosphere. 

The linear, time-dependent problem, for monochromatic Rossby waves incident 
upon an initially undisturbed critical line in constant shear, was originally solved by 
Dickinson (1970), and further elucidated by Warn & Warn (1976), for the case of 
inviscid flow. It predicts that the critical layer acts as a perfect absorber, as long as 
the linearization remains valid, but that nonlinear effects become important after 
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FIGURE 1. The continuous curve represents the time evolution of the absorptivity of a Rossby-wave 
critical layer according to the SWW solution. The absorptivity is expressed as a normalized 
Reynolds-stress or momentum-flux jump across the critical layer, equivalent in this problem to 
the phase-slope jump or ‘logarithmic phase jump’ of the fundamental harmonic. The initial value 
is --R and represents the absorbing state predicted by linear critical-layer theory; zero re resents 
perfect reflection, and positive values over-reflection ; see (2.36) ff. The time is in units ofA-l&lAy-l, 
where A is the shear of the basic flow, k the x-wavenumber of the Rossby wave, and by  the 
critical-layer width scale (the units in which the y-coordinate is expressed in figure 2). Ay is equal 
to .f / i /B, where B = dq,/dy is the initial absolute (potential) vorticity gradient, assumed constant 
in this case, and 8 the disturbance amplitude defined in $2. The area under the entire curve, between 
time zero and infinity, is equal to the area enclosed by the finely dotted rectangle (see $1.4). The 
dashed curve schematically represents a result from the pioneering numerical simulation by BBland 
(1976, figure 5); see also figure 5 of this paper. Ay varies with time in the problem solved by BBland, 
so that a quantitatively meaningful comparison in the same time units is not possible. The dashed 
curve has been drawn on the assumption that the effective value of Ay was increased (by about 
10 yo) by the effects of instability in BBland’s simulation; cf. (1.11) with b cc Ay. 

a sufficient time no matter how small the amplitude of the incident wave. Our 
understanding of the subsequent nonlinear time evolution has been greatly advanced 
in recent years, particularly through the numerical work of BBland (1976, 1978) and 
the analytical and numerical work of Warn & Warn (1978), Stewartson (1978), Brown 
& Stewartson (1978), Smith & Bodonyi (1982), and Ritchie (1985). The most detailed 
formal analysis of the nonlinear time evolution is that of Warn & Warn (1978), who 
by making simultaneous use of matched-asymptotic and multiple-scale techniques 
clarified the general structure of the inviscid initial-value problem. In addition, the 
important discovery was made that special cases exist (Warn & Warn 1978) in which 
a complete analytical solution can be found to leading order (Stewartson 1978). We 
thus have examples in which a self-consistent, quantitative description of the inviscid 
evolution of the critical layer, or rather a description of one possible such evolution, 
is available out to times t very much larger than the time at which linear theory breaks 
down. That evolution is inaccessible to almost any kind of numerical method, because 
of the exponentially large vorticity gradients which develop on exponentially small 
spatial scales in certain parts of the critical layer. 

The Stewartson-Warn-Warn solution, as we shall call this analytical solution for 
convenience (hereinafter referred to as the ‘ SWW solution ’), predicts that nonlinearity 
turns the critical layer from a wave absorber into a wave reflector, then immediately 
into an over-reflector (reversing the wave-induced momentum flux outside the critical 



452 P .  D .  Killworth and M. E.  Mclntyre 

layer), then back into a weaker absorber, and so on. The state of the critical layer 
continues to oscillate about perfect reflection in this manner, as shown by the 
continuous curve in figure 1.  The oscillations die away like t-2. As far as the wave 
motion outside the critical layer is concerned, the perfectly reflecting state which is 
approached at  t + co is nearly equivalent to that predicted by the earlier, steady-state 
theories of Benney & Bergeron (1969), Davis (1  969), and Haberman (1972) (hereinafter 
referred to as BBDH), in the limit of small viscosity. During the long evolution 
towards perfect reflection, the critical layer causes higher harmonics of the incident 
wave to appear in the flow outside it, as Warn & Warn showed would generally occur 
(figure 3 below). However, at least in the case of the SWW solution itself, the 
contribution from these higher harmonics to the stream function in the outer flow 
decays to zero in the long-time limit. The SWW solution and its physical meaning 
are reviewed in $2 of this paper. 

1.2. Instability 
The present work was motivated by the realization that the SWW solution represents 
an unstable flow, with growth rates generally much faster than the timescale of the 
evolution just described.t The unstable condition first develops when t exceeds the 
value ti marked in figure 1. This raised the possibility that the long-time evolution 
might be quite different in reality. Indeed BBland’s numerical work did, originally, 
predict a qualitatively different time evolution, a fact which to our knowledge has 
never been satisfactorily explained. We now believe that the instability is the most 
likely explanation, even though the numerical scheme used by BBland may not have 
represented the unstable disturbances with great accuracy. In his best-resolved 
simulation, which predicted a time evolution like that indicated schematically by 
the dashed curve in figure 1,  with little indication of over-reflection (BBland 1976, 
figure 5), disturbances appeared at the expected stage in the evolution and showed a 
spatial structure very like that predicted by the instability theory (figures 5 b , c  
below). 1 

The instability theory is presented in 493 and 4. The instability is an ordinary 
two-dimensional inviscid shear instability, in the sense that it depends in the usual 
way upon a reversal of the absolute vorticity gradient in the y- or cross-stream 
direction. The unstable modes have a two-scale spatial structure in the y-direction 
paralleling that of the SWW solution itself. This is related to the fact that the shear 
of the basic flow, 

A = -  duo(?./) 
dY ’ 

is large in comparison with the absolute vorticity contrast Sq across the narrow region 
of reversed vorticity gradient to which the instability owes its existence. The 
maximum growth rate turns out to be of the order of Sq. Even though this is much 
slower than the basic shear rate A ,  it  is much faster than the rate at which the SWW 
solution itself evolves. Consequently there is a separation of timescales which permits 
the time evolution of the SWW flow to be ignored in the instability analysis. 

t This result was first announced in December 1979 at the 17th IUGG General Assembly; 
see Ruttenberg (1980). 

$ It is alvo possible that the disturbances appearing in Bdand’s simulation had a different cause, 
namely the resonant amplification of stable harmonics recently studied by Ritchie (1985). But for 
reasons t o  be given in $4 we think that the explanation in terms of instability is the more likely 
alternative, on present evidence. 
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Moreover, there is a corresponding separation of streamwise or x-scales, which 
permits the use of a local parallel-flow approximation. The disturbance x-scale is much 
smaller than that of the SWW solution, albeit much larger than the width of the 
critical layer. These scaling relations imply, incidentally, that the unstable distur- 
bances can always be treated as inviscid. If viscosity is small enough for the SWW 
solution to be applicable in the first place, then it is afortiori negligible for the faster- 
evolving instabilities, since the same minimum spatial scale, the critical-layer 
width, is relevant to both. 

The scale separation in y between the inner, critical-layer region and its surroundings 
gives rise to a further parallel between the instability and the basic SWW solution. 
This will prove to be significant for understanding the long-time evolution of the 
critical layer. The matched-asymptotic theory, which is used to compute the 
structure of the unstable disturbances to leading order, predicts that the nonlinear 
saturation of the instability, and the concomitant rearrangement of vorticity, will 
take place in the inner, critical-layer region only. Although the outer region plays 
an essential role in the nonlinear evolution of the instability, through the coupling 
to the inner region expressed by the matching conditions, the dynamical behaviour 
of the outer region itself remains linear to a first approximation, just as in the SWW 
solution itself.? 

1.3. Could the instability give rise to prolonged absorption? 
Accurate calculations of the nonlinear development of the instability are given in 

the following paper (Haynes 1985). As anticipated from order-of-magnitude estimates 
($3 below), the amplitudes a t  which the instability typically saturates turn out to 
be more than enough to cause a substantial two-dimensional rearrangement of 
vorticity within a finite central region of the critical layer. The width of this region 
is numerically of the same order as that of the cat’s-eye pattern in the SWW stream 
function. Such a rearrangement of vorticity may be expected to lead to a time 
evolution which differs substantially from that indicated by the continuous curve in 
figure 1 since, as will be recalled in $2, the absorptivity of the critical layer is a 
functional of the vorticity distribution within it. 

At  this point, one might be tempted to speculate (as in fact we did in the early 
stages of this work) that the instability might lead to prolonged absorption, and that 
this might explain the absorptivity seen in the Earth’s atmosphere over timescales 
of the order of a month or more, according to certain well-established meteorological 
statistics (e.g. Starr 1968; Edmon, Hoskins & McIntyre 1980; Karoly 1982; Hamilton 
1982 ; Held 1983, p. 145 and references). Although BBland’s results did not suggest 
this (cf. dashed curve in figure l),  it seemed reasonable to suppose that they might 
have done so had the numerical resolution been higher, and the instability better 
resolved. The idea appeared to be supported by an intuitive appeal to the notions 
of ‘mixing length’ and ‘eddy viscosity’, since the disturbance velocity and mixing- 
length scales predicted by the instability theory and its nonlinear extension can be 
shown to correspond to an exceedingly viscous critical layer and therefore, it might 

t This aspect of the situation finds an illuminating analogy in what, at first sight, might appear 
to be an unrelated problem, namely that of the action of musical oscillators such as the clarinet 
or bowed string. The nonlinearity controlling the saturation amplitude is largely concentrated in 
one place, at the reed or bow, whereas the time evolution of the system as a whole depends on the 
coupling between the nonlinear element and the rest of the system, exactly as it does in the 
critical-layer problem. (For recent reviews see Fletcher 1979, and McIntyre, Schumacher I% 
Woodhouse. 1983.) 



454 P .  D .  Killworth and M .  E .  McIntyre 

be thought, to an absorber (Lin 1955; Haberman 1972; BBland 1978; Brown & 
Stewartson 1978; Tung 1979; Smith & Bodonyi 1982). 

However, it will be shown in $55-7 that, in a very wide set of circumstances, the 
opposite is the case. This well illustrates the dangers inherent in too careless a use 
of the notion of ‘eddy viscosity’, even for the purpose of an order-of-magnitude 
argument. We shall see that over long periods of time the critical layer must, on 
average, be a perfect reflector, in a sense to be defined in $1.4 below, no matter how 
chaotic the motion may be in any finite central region. More precisely, a critical layer 
of bounded width, such as might be set up by a Rossby wave of bounded amplitude 
and constant streamwise phase speed, will be a perfect reflector in the long-time 
average - even though the time evolution of its absorptivity may well differ, in other 
respects, from that suggested by the SWW solution - whenever the fluid motion is 

(i) two dimensional, 
(ii) free of sources and sinks of vorticity due to external forcing, 

(iii) unable to advect vorticity into or out of the critical layer (implying that the 
critical layer always consists of the same material fluid elements,t and 

(iv) unable to diffuse vorticity towards or away from the critical layer. 

The vorticity may be subject to diffusion or to any other laminar or ‘turbulent’ 
transport process within the critical layer, provided that the transport is confined to 
some central region having finite width, so that (iv) is satisfied and provided also that 

(v) the transport process just referred to is such that the range of values of 

Even up-gradient vorticity transport is allowed, therefore, as long as it is not so 
persistently up-gradient as to cause the range of values to increase without bound 
in the region affected by the transport. Note that, in the assumed circumstances, 

(vi) the critical layer is free of external sources and sinks of mean momentum, 
where ‘ mean ’ refers to the usual streamwise Eulerian mean. Otherwise, (ii) would 
be contradicted for a critical layer of finite width. Finally, the motion is assumed 
incompressible to a sufficient approximation, as is usual when talking about Rossby 
waves. 

The foregoing statements imply, inter alia, that the sustained absorption exhibited 
by the viscous critical-layer models usually studied cannot be attributed solely to 
the diffusion of vorticity within a given central region. The fact that these models 
violate condition (iv) is crucial. The work of Haberman (1972), Brown 6 Stewartson 
(1978) and Smith & Bodonyi (1982) has shown clearly that, in such models, which 
assume spatially uniform viscosity, x-averaged vorticity does indeed diffuse further 
and further away from the centre of the critical layer as time goes on, occupying 
regions of width O(t$ on either side as t +  00. 

The sustained absorption seen in long-term meteorological statistics seems likely, 
by contrast, to be due mainly to violation of conditions (ii) and (iii), reading ‘potential 
vorticity on an isentropic surface’ for ‘vorticity ’ (e.g. Charney & Stern 1962; Hoskins 
et al. 1985). If eddy viscosity values are much smaller outside the central critical- 
layer region than within it, as the instability theory suggests might typically be the 
case in the real atmosphere, then condition (iv) could be relatively well satisfied 
and the usual concept of a viscous critical layer irrelevant. 

t Note that condition (iii) is violated if fresh fluid elements are carried into the critical layer 
by mean circulations, or if the critical layer moves through the fluid. 

absolute vorticity stays bounded in the region affected. 



Rossby-wave critical layers 455 

1.4. A bound on the time-integrated absorptivity 

The general measure of absorptivity - to which the foregoing statements will be shown 
to apply is the jump [u’v’] in the wave-induced Reynolds stress or Eulerian 
momentum flux = across the critical layer. (In the meteorological case, read 
‘convergence of the Eliassen-Palm flux onto the critical layer’.) The overbar 
represents the Eulerian mean with respect to the streamwise coordinate x, and (u’, w‘) 
are the (2, y) components of the departure of the velocity field from its Eulerian mean. 
In the case of the SWW solution, the continuous curve in figure 1 can be regarded 
as a graph of -[=I against time, the normalization and sign convention being 
chosen such that the value at  t = 0 corresponds to the rate of absorption predicted by 
linear theory. The value zero corresponds to perfect reflection, as already implied. 

We define the time-integrated absorptivity as 

a(t) = j: [=]dt 

(with the sign conventions used by SWW). In the case of the SWW solution, it is 
proportional to minus the area under the continuous curve in figure 1 up to time t ,  
and it is shown in the appendix to take the finite limiting value 

a ( ~ )  = 3.0858 2 dq (’)‘ (SWWcase), 
dy 

where k is the x-wavenumber of the incident Rossby wave, and 8 the amplitude of 
the y-component of the disturbance velocity at the critical layer, which is constant 
with time in the SWW solution. The magnitude of a(m) is shown in figure 1 as the 
area of the finely dotted rectangle. 

The general result to be proved in §§5-7 may be stated as follows. If conditions 
(i)-(vi) of $1.3 are satisfied, a critical layer of bounded width set up by a Rossby wave 
of bounded amplitude (the bounds on the width and amplitude being independent 
oft)  must satisfy a relation of the form 

I a(t) I < amax (for all t), (1.3) 

where the bound a,,, depends on the width and amplitude but is independent oft. 
It is in this, quite strong, sense that the critical layer must be a perfect reflector 
in the long-time average, regardless of the details of its time evolution. In  particular, 
if a steady state should be reached it must be one of perfect reflection, just as was 
originally predicted by the BBDH model, where ‘reflection’ would in general include 
contributions to u12rl due to radiation of higher harmonics from the critiaal layer, 
if any.t Explicit expressions for amax are presented in §§6, 7, after giving 
appropriate definitions of ‘bounded wave amplitude ’ and ‘ bounded critical-layer 
width ’. There are different versions representing different tradeoffs between simplicity 
and sharpness of the bound. The expressions for amax have the order of magnitude 
suggested by the right-hand side of (1.2), or more generally by (1  .lo)-( 1.12) below. 

One implication of these results is that in cases where the absolute vorticity is 
uniform throughout the critical layer amax is zero. Therefore a(t) itself must be zero. 
It follows that in such cases the critical layer is a perfect reflector for all time t ,  
whether in the linear or nonlinear stages of its development. In other cases where 

t It happens that there are no such contributions in the BBDH and SWW models; in the latter 
case this is a consequence of the boundary conditions imposed, which prevent the higher harmonics 
from radiating away. 
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(potential) vorticity gradients are sufficiently weak within the critical layer, any 
absorption or over-reflection that takes place must be correspondingly weak for all 
t, a fact which may be significant for certain problems in large-scale atmospheric 
dynamics (e.g. Tung & Lindzen 1979a,b; Tung 1979; McIntyre 1982; McIntyre & 
Palmer 1983). 

Although the wave amplitude must be assumed to be bounded for all t ,  in order for 
the result (1.3) to  apply, i t  need not be small. Included is the meteorologically 
important case of large wave amplitude, in which ‘critical layers’ are certainly 
nonlinear, but certainly not thin. Thus the results of 555-7 represent a significant 
extension of the scope of critical-layer theory. In  particular, the method of matched 
asymptotic expansions is not used in the proof of (1.3). Nor is any particular cat’s-eye 
structure assumed. 

The result (1.3) is a direct consequence of the conservative behaviour of (potential) 
vorticity, which is neither created nor destroyed in the circumstances considered 
(although it may, for instance, be diffused). For the purpose of proving (1.3), the 
‘ critical layer ’ is defined as the material region within which significant rearrangement, 
mixing, diffusion, or turbulent transport of vorticity takes place. In  the assumed 
circumstances, the width of this region will be bounded provided that condition (iv) 
holds. It turns out to be a matter of some delicacy to decide precisely how much 
vorticity rearrangement is ‘Significant’. In  the case of the SWW solution, for 
instance, most of the vorticity rearrangement does take place in and near the cat’s 
eyes of the central region, as illustrated in figure 2 below, but a certain amount takes 
place also in a much wider region including the outer flow. This is due to the presence 
of starting transients which render the disturbance not quite monochromatic with 
respect to streamwise phase speed (Dickinson 1970). They take the form of ‘sheared 
disturbances’, which are equivalent to a continuous spectrum of phase speeds and 
are described in the well-known way by disturbance fields having the form of a 
function o f t  times a sinusoidal function of (2-Ayt) (e.g. Kelvin 1887; Yamagata 
1976; Brown & Stewartson 1980; Rhines & Young 1983; Shepherd 1985 and 
references). Their presence in the outer flow is the reason why a full asymptotic 
solution of the problem for large t requires the use of multiple-scale as well as 
matched-asymptotic techniques, beyond a certain level of approximation, as was 
shown by Warn & Warn (1978). 

If we ignore this point for the present - it is dealt with rigorously in 5$5-7 - then 
a simple ‘mixing argument’ can be used to make the result (1.3) immediately 
plausible, and to  give a rough idea of likely values for a(m)  and amax. Consider a 
thought experiment in which the source of Rossby waves is gradually turned on and, 
after an arbitrarily long time interval, gradually turned off again. Assume that the 
initial and final states are both parallel shear flows, independent of x, with absolute 
vorticity profiles po(y) and p,(y) respective1y.i Assume further that there is no 
permanent rearrangement of vorticity (including that due to diffusion or other 
transport processes) anywhere except within a ‘ mixing region ’ 

I Y I  < i b ,  (1.4) 

t The notation q for absolute vorticity is chosen for later convenience and also to suggest the 
meteorological generalization to stratified, rotating flow, in which the symbol q is often used to 
denote a quantity that is then relevant, the quasi-geostrophic potential vorticity. The horizontal 
distribution of q approximately corresponds to the (more fundamentally significant) iaentropic 
distribution of Rossby-Ertel potential vorticity. See, for example, the important paper by Charney 
& Stern (1962), and the recent review by Hoskins et al. (1985). 
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of constant width, b, which for present purposes we identify with the critical layer. 
The difference 

between the initial and final absolute vorticity profiles then vanishes outside the 
mixing region, and vorticity conservation dictates that the integral of Aq across the 
mixing region must be zero: 

AdY)  = q,(Y)-qo(Y) 

Aq(y) is related to the corresponding change Au(y) in the velocity profile by 
Aq(y) = -aAu(y)/ay, so that 

Au(y) vanishes outside the mixing region, by (1.5). It is related to the time-integrated 
absorptivity by momentum conservation, in virtue of condition (vi) above. We have 

where the last step uses integration by parts and depends on the vanishing of Au(y) 
outside the mixing region. Suppose now that the range of values of absolute vorticity 
q within the mixing region satisfies 

Pmin G q G Pmax . (1.8) 

Here qmin and qmax can be taken as finite constants for all t ,  by condition (v). There 
are two functions Aq(y) that maximize the absolute value of the last integral in (1.7) 
under the constraint (1,8), namely the step functions 

= f (qmax-qmin) S P Y .  (1.9) 

amax = 3qmax-qmin) b2* (1.10) 

Evaluating the integral, we deduce that (1.3) holds with t = 00 and 

Such a Aq(y) is of course highly improbable - indeed it may not even represent a 
q-conserving rearrangement, for general q,(y) - and so we do not expect this bound 
to be at  all sharp. For instance, suppose that the initial absolute vorticity profile has 
constant gradient dqo/dy, and assume perfect mixing. Then the final value of the 
absolute vorticity gradient is zero in the mixing region, and evaluation of the 
right-hand side of (1.7) gives 

(1.11) 

This is one third of the bound given by substituting qmax-qmin = b dqo/dy into ( I  .lo), 
namely 

(1.12) 

The assumption of perfect mixing may not be very realistic (e.g. Clough et al. 1985; 
McIntyre & Palmer 1984; Haynes 1985), but the expression (1.1 1)  is probably closer, 
nevertheless, to actual large-time values of ~ ( t )  than (1.12) would be. 

The estimate (1.11) suggests an intuitively appealing way of characterizing the 
time-integrated absorptivity of a Rossby-wave critical layer, in terms of a 'mixing 
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width ’ b,. For any Rossby-wave critical layer whose absolute vorticity gradient has 
a constant initial value dq,,/dy and for which the limit a(00) is attained, one could 
define its ‘ mixing width ’ b,  as the value of b which makes the right-hand side of (1.1 1) 
equal to the actual time-integrated absorptivity, i.e. 

In the case of the SWW solution, (1.2) and (1.13) give 

8 1  
b ,  = 3.3331 lal , 

(1.13) 

(1.14) 

which is about five-sixths of the width of the cat’s eyes in the stream-function pattern. 
This is indicated by the bar a t  the centre of figure 2 ( d )  below. 

The analysis to be given in $55-7 improves on the simple mixing argument just 
given, by replacing the unrealistic assumption (1.4), that of a finite mixing region, 
with a realistic assumption about the rate at  which disturbances to the vorticity field 
fall off with distance from the central region. The resulting proof of (1.3) is rigorous 
and quite generally applicable. It applies for all t ,  does not require the incident wave 
to die away after a certain time, and does not require vorticity rearrangement to be 
wholly confined to a region of finite width. The mathematical questions involved are 
not entirely trivial. This can be seen at once from the presence of the factor y in the 
integral on the right of (1.7) together with the fact that in some cases, for instance 
that described by the SWW solution, the magnitude of the vorticity disturbance falls 
off as slowly as I yI-l as I yl+co. 

The general proof also avoids reference to the actual momentum changdAu(y) dy. 
Rather, it is expressed directly in terms of disturbance correlations like u’v’ and the 
corresponding vorticity flux v’q’, which as is well known are related by the Taylor 
identity 

- (u’v’) = -vlp’. (1.15) 

This route to (1.3) is a better preparation for extending the analysis to the 
three-dimensional, meteorological case. In  that case the actual momentum change 
does not satisfy any relation as simple as (1.7), because of the existence of secondary 
circulations in the (y, 2)-plane which redistribute absolute angular momentum. 
However, (1.15) generalizes immediately, the left-hand side being replaced by the 
convergence of the Eliassen-Palm flux, as is well known, and the right-hand side by 
minus the flux of quasi-geostrophic potential vorticity. 

The mathematical tool on which the general proof depends is a finite-amplitude 
conservation theorem for time-dependent disturbances to parallel shear flows, which 
appears to be new and which generalizes the well-known results of Taylor (1915) and 
(for the three-dimensional case) of Eliassen & Palm (1961). The two-dimensional 
version of this theorem is proved in §$5 and 7. The ‘diffusive’ case is included by 
means of a formalism which expresses condition (v) of $ 1.3 in a somewhat abstract 
but very general way, thus allowing for a very wide class of vorticity-transport 
processes of which ordinary downgradient diffusion is a special case. The only 
restrictions are those dictated by condition (v), and implicitly by condition (vi) : the 
transport process must not, of course, violate momentum conservation. The 
conservation theorem may have applications other than the present one. In the 
non-diffusive case the theorem can be inferred from a mathematical analogy between 
the present problem and the notion of ‘available potential energy’ for a stratified 

a -  - 

a Y  
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fluid, as suggested by the forms of the right-hand sides of (1.7) and (1.15). The result 
(1.3) corresponds, in the analogy, to the statement that the potential-energy change 
due to rearrangement of a stratified layer of finite depth is bounded. 

We now turn to the SWW solution and its instability. 

2. The SWW solution 
The review to be given in this section will introduce some essential notation, and 

will also remind us of the fact that the fluid-dynamical situation described by the 
SWW solution has two cardinal features in common with other, more complicated 
cases, including cases in which the instability is excited and modifies the properties 
of the critical layer. First, the absorbing or reflecting properties of the critical layer 
depend mainly on the distribution of vorticity within and near the Kelvin ‘ cat’s eyes ’ 
of the stream-function pattern. This vorticity field induces a velocity field which 
extends outside the critical layer and thereby influences the outer flow. Secondly, the 
time evolution of the vorticity distribution within the critical layer is given by a 
conceptually simple rule : take the leading approximation to the cat’s-eye streamline 
pattern, which is controlled by the linear, wavelike flow outside the critical layer 
through the leading-order matching condition, and use the corresponding approxi- 
mate velocity field to advect the absolute vorticity distribution within the critical 
layer. For this purpose one can neglect the correction to the velocity field induced 
by the changing vorticity distribution. Within the critical layer, it is a higher-order 
contribution. In summary, 

(a)  as far as the inner, critical-layer problem is concerned the absolute vorticity 
behaves like a passive tracer to leading order, but 

( b )  its induced velocity field is important to leading order outside the critical layer, 
being the means whereby the critical layer exerts its influence upon the outer 
flow and acts as an absorber, reflector, or over-reflector. 

In the case of the SWW solution itself, there is a further simplification. Conditions 
in the outer flow, including the boundary conditions, can be chosen in a special way 
(Warn & Warn 1978, 56; (2.24) below) such that the changes induced in the outer 
flow by the evolving vorticity distribution within the critical layer do not react back 
upon the leading-order cat’s-eye streamline pattern. The cat’s-eye flow can therefore 
be taken as steady, to leading order, throughout the nonlinear evolution. The 
resulting absolute vorticity distribution within the critical layer is particularly 
simple. It is illustrated in figures 2(a),  ( b ) ,  (c), ( d ) ,  at four successive instants corres- 
ponding respectively to the times marked t,, tb, t , ,  and t ,  on the abscissa in figure 1. 
The cat’s-eye flow is twisting up the contours of constant absolute vorticity like 
spaghetti on a fork. The possibility of shear instability is at once apparent from the 
fact that regions of reversed absolute vorticity gradient exist after a certain time ti,  
lying between t ,  and tb and also marked on the abscissa in figure 1 .  The time ti  is 
the time for the centre of the cat’s eye to rotate through one right angle. 

The leading-order analytical details of the SWW solution will now be summarized, 
together with the scaling assumptions which define its parameter regime. As before, 
(5,  y )  are streamwise and spanwise Cartesian coordinates and (u,  v )  the corresponding 
velocity components. The starting point is the barotropic vorticity equation for 
inviscid, two-dimensional, incompressible motion on a beta-plane, namely 

= 0, 3 
Dt 
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FIGURE 2. Contours of the absolute vorticity field predicted by the SWW analytical solution, a t  
four times t,, t,, t ,  and t,. The dimensionless time units are the same as in figure 1 ; see also (2.21). 
Linear theory (Dickinson 1970) is beginning to  break down a t  time t,, panel (a), and perfect 
reflection is attained just before time t,, panel (d). The ?-scale is exaggerated for clarity. The abscissa 
Y is expressed in units of Ay, where Ay is equal to EpA//3, where /3 = dq,/dy is the basic absolute 
(potential) vorticity gradient, and E the disturbance amplitude defined in $2. The bar a t  the centre 
of (d) represents the ‘mixing width’ b,  defined by equation (1.14). 
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where the material derivative 

_-  ~a a a 
Dt - z + u - + v  -, ax ay 

and where the materially conserved quantity q is the absolute vorticity, as before. 
It is defined by 

q = /?y+c+constant, (2.3) 

where 

the relative vorticity, and where B is a positive constant, representing the planetary 
vorticity gradient or northward gradient of the Coriolis parameter. The incompres- 
sibility condition 

(2.5) -+- = 0 

permits the introduction of a stream function $(x, y, t ) ,  for which we adopt the sign 

au av 
ax ay 

convention 

giving c = +V2@ so that 
q = By + V2@ + constant. 

These equations and definitions comprise the basic mathematical model to be used 
until $7,  where we generalize (2.1) to include the possibility of a non-advective 
transport consistent with condition (v) of $1.3. 

SWW examined weak, x-periodic disturbances, of wavelength 2n/& say, to an 
initial state with constant shear A : 

(2.8) 

Thus ll.=- i A Y 2 + 4 X , Y ,  0, (2.9) 

u = uo(y) = Ay, q = qo(y) = /?y+constant. 

say, where E is a small, dimensionless parameter. It is convenient at this point to 
redefine the symbols x, y, t ,  q, $ and 4 so that they become dimensionless quantities, 
using the natural scales 

(2.10) 1 A/$  for X , Y ,  

A - l  for t,q-’, 

~ 3 1 ~  for +,+. 
When 4 and y are both of order unity, i.e. away from the critical layer, the small 
dimensionless parameter E measures the order of magnitude of the particle 
displacement in the y-direction in units of A/ /? .  The dimensionless forms of (2.7) and 
(2.9) are the same expressions with B and A set equal to unity. Substituting these 
into (2.1) ff., we get 

v24t + Y v 2 4 x  + 4 x  + E(4x v24, - 4, V24,) = 0, (2.11) 

where the suffixes x, y and t denote partial differentiation. 
The SWW solution depends not only on assuming that E is small, but also on 

considering solutions to (2.11) whose x-wavelengths are long in comparison with the 
natural lengthscale A / / ?  (more precisely, 4 -4 / ? / A ) ,  so that the operator V2 appearing 
in (2.7) and (2.11) may be approximated by a2/ay2 for all y. (Warn & Warn’s formal 
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analysis covers many other cases as well, but these do not admit analytical solutions 
and will not be considered here.) Let 

A 
p = L - 4 1 ,  

P 
and introduce the corresponding slow x and t variables 

2 = p x ,  & = p t ;  

(2.12) 

(2.13) 

2 is the x-distance measured in radian wavelengths, and f = 1 represents the time for 
a fluid element a t  y = 1 (dimensionally, at  y = A / P )  to be carried a dimensional 
distance k1 by the basic flow (2.8). These assumptions allowed SWW to simplify 
(2.11) to 

(2.14) 

where the symbol 4 denotes 9 regarded as a function of 2,  y and f .  

and took the initial and boundary conditions to be 
sww considered flow in a domain - a3 < y < Y b ,  with Y b  formally of order unity, 

(2.15a) 

(2.15b) 

(2.154 

These describe the switching on, at & = 0, of a steady sinusoidal disturbance at y = Yb 

such as might be generated by the flow past a corrugated boundary. The constant 
a appearing in ( 2 . 1 5 ~ )  is taken to be real and of order unity; its numerical value will 
be chosen shortly in a way that will prove convenient. 

The work of Dickinson (1970), Warn & Warn (1976) and SWW showed that the 
leading approximation to the linear (e = 0) solution of (2.14) and (2.15) tends to a 
steady state, for & B 1, everywhere except within a non-dimensional distance O(t- l )  
of the critical line y = 0. This steady-state, linear solution is 

Re [ {A,  f(Y) + B, g ( y ) )  (Y > O ) ?  (2.16a) 

Re [A ,  h ( y )  (y c O),  (2.16b) 

where the real-valued functionsf(y), g ( y )  and h ( y )  are defined in terms of the Bessel 
functions Y,, J ,  and K,  by 

4 =( 

f(Y) = -w:yl(2Y:) 
= 1-yl0gy-(2y-1)y+O(y2 logy), (2.17 a) 

(2.17 b) d Y )  = Y w Q / 4  = Y + 0 ( Y 2 ) ,  

h ( y )  = 21Yl:K,(2lYl9 
= l + l v l  logIYl+(2Y--1)IYI+0(IYl2 loglyl ) >  ( 2 . 1 7 ~ )  

y = 0.57722 being Euler’s constant and the 0 symbols referring to the limit y+O. 
It is straightforward to check that (2.16) satisfies (2.14) with the terms in a / a t ,  e and 
p neglected. The constants A ,  and B, in (2.16) are determined, in this linear problem, 
by the relations 

B, = - i d ,  (2.18) 

and Aof(yb)  + BOg(yb) = a. (2.19) 

The last relation expresses the boundary condition ( 2 . 1 5 ~ ) .  
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According to (2.16) and (2.17), 4 is continuous across the critical line y = 0. The 
continuity of 4, together with the relation (2.18), can be deduced either from the exact 
solution of the initial-value problem (Dickinson 1970; Warn & Warn 1976) or 
alternatively from an application of the method of matched asymptotic expansions 
(SWW). We note that the dimensionless Reynolds stress -$e$y implied by (2.16) 
is constant in y > 0 (Taylor 1915; Foote & Lin 1950; Eliassen & Palm 1961), being 
proportional to the Wronskianfg' -fg = 1. The Reynolds stress is zero in y < 0, and 
the resulting jump discontinuity across y = 0 is given by 

- 

- 
[-4e4,1 = :WA,B,*), (2.20) 

where the asterisk denotes the complex conjugate. 
The validity of linear theory ceases when F becomes large, of order s-k (Warn & 

Warn 1976), at which time the s-term in (2.14) becomes significant. It does so within 
the critical-layer region y = O(d). From then on a still slower time variable 

P = B e  = €+A (2.21) 

is appropriate ; it  is this that corresponds to the timescale of the nonlinear evolution 
illustrated in figures 1 and 2. SWW showed that the steady-state y-structure 
expressed by (2.16) and (2.17) is still relevant outside the critical layer on this 
timescale, but that because of the nonlinear evolution within the critical layer the 
constants A,, B, in (2.16) become functions of f', with (2.18) ceasing to hold, while 
extra terms representing the higher harmonics of exp (iP) appear in the solution. 
Following Stewartson, we express this state of affairs succinctly by writing 

I A(P, P ) ,  B ( f ,  P )  
in place of 

Re [A, ei2], Re [B, eiP], 
(2.22) 

in (2.16), with A(P, P ) ,  B ( f ,  P )  real, so that, in particular, the boundary condition 
(2.19), with a real, is replaced by 

(2.23) 

The SWW solution describes the nonlinear behaviour, for order-unity values of p, 
in the set of special cases for which g(&) = 0 (andf(yb) =I= 0) so that (2.23) constrains 
A to be independent of f'. The boundary positions for which g(yb) = 0 are 

Yb = (ijl, n)2 = 3.671,12.305,25.875, ... , (2.24) 

jl,n being the nth zero of the Bessel function J1. In the remainder of this section, 
and in $$3 and 4, we restrict attention to these cases, and without loss of generality 
choose a in (2 .15~)  and (2.23) to be such that 

A($, P )  = A($) = COSP. (2.25) 

Now if we substitute into (2.16) and the dimensionless form of (2.9) the leading- 
order, O(1) terms of (2.17), we obtain the following small-y approximation to $, the 
dimensionless total stream function $ regarded as a function of 8, y and F: 

$ - -fy2+s COSP. (2.26) 

SWW showed that this gives the leading approximation to the total stream function 
even inside the critical layer, y = O(d), and not only at the end of the linear stage 
(as already shown by Dickinson's solution) but also throughout the nonlinear stage 
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of evolution, = O(1). The velocity field whose stream function is (2.26) is a steady 
Kelvin cat’s-eye flow, the bounding streamline through the saddle points of $ being 
given by 1,8 = -8, i.e. by 

y = f 2A I cos (ii) I, (2.27) 

showing that the maximum y-extent of the cat’s eyes is just + 2 d  in units of A l p ,  
or f 2  in terms of the scaled y-coordinate 

y = s-ty (2.28) 

for the critical layer. The timescale for the nonlinear evolution, corresponding to 
p - 1, can be thought of as the time for a fluid element to travel a substantial portion 
of the way around one of the cat’s eyes. For instance a fluid element near the centre 
of a cat’s eye, e.g. an element near the origin, makes a single round trip when p 
increases by 271. 

SWW’s analysis showed that the absolute vorticity q in the critical layer takes the 
form 

q = B Q(i, Y, + constant, (2.29) 

where Q(i, Y, P) = Y + Q,(i, Y, P)  + O(B log€), (2.30) 

Q,o, as well as Y being order-unity quantities, and where Y +Q,, the first approxi- 
mation to the scaled absolute vorticity, satisfies 

1 a a@ a a @  a -+>---- (Y+Q, )=O.  ( aT a i  ay a y a i  
(2.31) 

Here % is the appropriately scaled form of (2.26) (scale s) written as an order-unity 
function of (2, Y): 

Po(?, Y) = -; Y2+cosi. (2.32) 

Since % is a known function, Q, may be computed to leading order simply by 
integrating the first-order hyperbolic equation (2.31) along each steady streamline 
of (2.32), either numerically, or analytically using Stewartson’s implicit solution in 
terms of elliptic functions.? Either procedure, as we ourselves have verified, gives 
the results shown in figure 2, where P / d 2  = 1, 1.5, 2 and 3 in panels (a), (b), (c) and 
(d )  respectively. The situation described by (2.31) and figure 2 is a special case of the 
more general statement (a) made at  the beginning of this section. 

For later reference we note the asymptotic approximation 

Q, ~ - { c o s ( i - Y ~ ) - c o s ~ }  1 ( Y  %- P)  Y 
(2.33) 

(Warn & Warn 1976, 1978; Stewartson 1978), which satisfies (2.31) with zero initial 
disturbance if we make the approximation corresponding to linear critical-layer 
theory, viz. neglect the term -sin2 aQ,/ay in (2.31) with (2.32) substituted. It is the 
large-Y behaviour indicated by (2.33) that gives rise to the difficulty in using (1.7) 
mentioned earlier; (2.33) also illustrates the development outside the cat’s eyes of 
the ‘sheared disturbances’ mentioned in 5 1.4. These are visible near the periphery of 
figure 2 (d)  . 

The vorticity anomaly 0, induces a jump [ - 4v] in the dimensionless s-velocity 

t The fluid flow (2.32) is the same as the (incompressible) phase-space flow for a simple pendulum 
(Whittaker 1937, p. 72-74). 
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component -$u, as we move across the critical layer, so that (2.18) is replaced by 

(2.34) 

Here f and [ ] denote the Cauchy principal values of the respective limits I Y I + 00 

and I y I + O .  B(2, p) is an odd, periodic function of 2 whose nth harmonic is 

where 

Thus, recalling that A(?, p) = cos9, we see that (2.20) is replaced by 

(2.36) 

giving the time evolution of the dimensionless Reynolds-stress jump according to the 
SWW solution. The quantity plotted in figure 1 is actually -Bl(p), which is equal 
to the traditionally defined 'logarithmic phase jump'. As figure 1 shows, it takes the 
value --x for small 5?. The value --x can be directly verified from the asymptotic 
solution (2.33) using contour integration in (2.34), or alternatively from compatibility 
with (2.18), or yet again from the fact that, because of the well-known properties of 
linear differential equations, (2.16b) must be the analytic continuation of (2.16a), via 
the lower half-plane, at  the end of the linear stage. The value - B ,  = --x is often 
regarded as signifying perfect absorption, since this is true in a certain class of 
incident-wave problems, including the one originally solved by Dickinson, in which 
the basic shear and absolute vorticity gradient vary on a much larger y-scale than 
A l p .  In other cases the absorption may be only partial even when -B,  = --x (e.g. 
Tung 1979, equation (46)), depending very much on the relative values of the basic 
absolute vorticity gradient near and away from the critical layer; recall the remarks 
in the paragraph below (1.3). 

In connection with the terminology 'phase jump ' it should perhaps be recalled that 
- B, does not represent any actual phase discontinuity in the spatial structure of the 
disturbance itself, as is clear for instance from the fact that - B, = --x does not 
signify the same state of things as -B, = +x. Rather, as Warn & Warn show (1978, 
p. 43, q.v. for further discussion), -B,  can be regarded as the jump in the 
dimensionless phase slope M/ay, where B(y,p) is the phase of the fundamental 
complex Fourier component of the &dependence of the disturbance stream function. 
A better terminology might therefore be to call -B,  the 'phase-slope jump' (of the 
fundamental harmonic). 

Figure 3 compares the time dependence of the second and third harmonics - B2(f')  
and -B3(P) with that of -B,(P) .  

To complete our description of the SWW solution, we note the approximation to 
the total stream function within the critical layer that corresponds to the leading-order 
relative-vorticity distribution 0,. This may be written in terms of the scaled critical- 
layer stream function !?' defined by 

P(5, Y, P) = 8-1 $(Z, y, P), (2.37) 

to which % in (2.32) is the leading approximation. We have 

*(2, Y , F )  = %(Z, Y )  

-+(& log€) Y cosa-&{(27- 1) Y cosP+ !&}+O(€ log€), (2.38) 
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FIGURE 3. Time evolution of the first three harmonics - B l ,  -B2, -B8, defined in (2.35), of the 
Cauchy-principal-value velocity jump across the critical layer, according to the SWW solution. The 
first harmonic - B, gives the same curve as in figure 1 ; see (2.36) ff. 

where @l(2, Y ,  p) is related to Ql(2, Y ,  p )  by 

a 2  
- 3,(2, Y ,  P) = Q1(& Y ,  P).  a y2 (2.39) 

The remaining terms in (2.38) all correspond to irrotational motions, to this order. 
It is straightforward to  verify, using the matching rules given, for instance, by Lesser 
& Crighton (1975) and Van Dyke (1975)’ and recalling the asymptotic result (2.33), 
that (2.38) represents a three-term inner expansion to the first three orders of the 
asymptotic sequence 

(1, &logs, Q, €log€, ...), (2.40) 

which matches the two-term outer expansion represented by (2.16) and (2.17) 
together with the dimensionless form of (2.9). We note, in particular, that  (2.39) 
is consistent with (2.34)ff. We note also that, a t  the first two orders, the inner 
problem permits 9 to  be any function of the (approximately irrotational) form 
F(2,  p )  Y+G(2,  P) ,  but that  a t  the first order this cannot match the outer solutions 
(2.16a,b) unless F = 0. Together with (2.23) and (2.24) this is what fixes the form 
of the first approximation Yo to  be the form given in (2.32). The same principle wilt 
apply in the next section when finding the stream function describing the unstable 
disturbance. 

I n  preparation for the instability analysis i t  may also be useful to re-emphasize 
what has already been said in several ways, namely that the higher-order terms in 
(2.38) are not needed to  describe the velocity field responsible for advecting vorticity 
within the critical layer (recall (2.31)). At the order of accuracy to  which the problem 
has been solved, the higher-order terms in (2.38) arise solely as part of the machinery 
whereby the matched asymptotics express inversion of the relation (2.7), regarded 
as an equation for @ with q given. This of course is what is meant by the velocity 
field ‘induced’ by a given vorticity field. The inversion is an elliptic boundary-value 
problem involving the entire flow domain, both inner and outer regions simul- 
taneously - albeit slightly disguised by the fact that, under the present assumption 
(2.12), the operator V2 is everywhere replaced by a2/ay2. It is only in solving 
that boundary-value problem that matching between the two regions is involved. By 
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contrast, solution of the leading-order vorticity equation (2.31), for given !&, does 
not depend on any matching condition. This is evident from the hyperbolic character 
of that equation. 

If one were to extend the solution to higher orders of accuracy, one would find that 
the matching would hold in a coarse-grained sense only, as Warn & Warn (1978) made 
clear. This is because (2.16) and (2.17) neglect the sheared disturbances whose 
presence is indicated by the large- Y behaviour of (2.33)) and which extend into the 
outer region where they give rise to a fine-grained structure with typical y-scale d, 
vorticity amplitude E ,  and stream-function amplitude e2, in the units of (2.10). Warn 
& Warn handle this explicitly by using a combination of matched-asymptotic and 
multiple-scale techniques. In  particular, the analogue of (2.29) for the outer solution 
is 

q = y+ ed(Z, y, Y ,  F )  + constant. (2.41) 

Strictly speaking, the y-dependence of the stream function (2.9) should be rewritten 
in the corresponding way, but to the order considered this is inconsequential because 
of the fact that the leading-order fine-grained contribution to the stream function 
t,b is 0 ( e 2 ) ,  4 E ,  because of (2.7) and (2.28). 

3. The instability problem 

of (2.29), the dimensionless absolute vorticity is assumed to take the form 
We now consider disturbances to the slowly evolving flow discussed in $2. In place 

q = ~ { Q ( z ,  Y ,  P) +&(x, Y, T)} + constant ( 3 . 1 ~ )  

in the inner region. Q is the undisturbed flow (to which figure 2 represents the leading 
approximation) and 0 is the disturbance. Similarly, in place of (2.41), we assume 

q = y + e{g(Z, y ,  Y ,  5?) + Q(x, y, T ) }  + constant (3.lb) 

in the outer region. T is a new time variable whose definition is 

T = Bt, (3.2) 
and x is the dimensionless coordinate introduced in (2.10). The corresponding stream 
functions are written as 

~ = E{!@, Y ,  f") + P(x, Y ,  T ) }  ( 3 . 3 ~ )  

and t,b = - t Y Z  + 4$(% y, 0 + 6(., y ,  T ) } ,  (3.3b) 

for the inner and outer regions respectively. Strictly speaking, the y-dependences of 
Q and 6, as well as that of 4, should all be written in multiple-scale notation like the 
y-dependence of Q because of the presence of the fine-grained structure in g mentioned 
a t  the end of $2. But it will be found that the he-grained structure does not enter 
the instability problem to leading order. Consequently, to that order, Q and 6 have 
the simple outer structure just indicated in (3.1 b)  and (3.3 b). The whole picture will 
be seen to be justified post hoe when we find growth-rate maxima, within the assumed 
class of disturbances, with modal structures consistent with the forms of (3.1)-(3.3). 

Before proceeding, i t  may be useful to summarize all the time variables that have 
been introduced. They are 

t ,  C=pt, T =  Bt, 5?= Bpt. (3.4) 

It is immaterial to our results which of the middle two is the slower time variable, 
but i t  is essential that both are much slower than the left-hand variable t ,  and that 
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both are much faster than the right-hand variable p. We note that the dimensional 
timescale corresponding to  T is the reciprocal of 

8q = $A, (3.5) 

which is therefore the dimensional scale for disturbance growth rates. Maximum 
growth rates will in fact turn out to  be equal to  8q times dimensionless numbers 
ranging up to 1.24, in the cases considered. The same quantity 8q measures the typical 
strength of vorticity variations within the critical layer, being /3 times the critical-layer 
thickness dA//3. Moreover, the corresponding timescale 8q-l is equal to the time for 
a fluid element in the critical layer to move a streamwise distance of order A//3,  
(non-dimensionally, x N l ) ,  the streamwise scale of the disturbance. It will be recalled 
that, by our earlier assumption (2.12), A//3 is much smaller than the scale k1 
(non-dimensionally, 4 - l) ,  characteristic of the SWW solution. 

The foregoing scale relations have two important consequences. First, the distur- 
bances can be analysed locally in 2 (although not in y ) ;  we can speak of growth rates 
and disturbance structures ‘at ’ different locations along the length of the SWW eat’s 
eye. Secondly, growth will be effectively instantaneous when viewed on the longest 
of the four timescales, that  of the nonlinear evolution of the SWW solution. In  
particular, the instability will have taken effect shortly after the time t i ,  and long 
before the time t,, marked in figure 1. 

To derive the equation satisfied by the disturbance in the inner region, we 
substitute the expressions ( 3 . 1 ~ )  and ( 3 . 3 ~ )  into the dimensionless forms of (2.1) ff., 
subtract out the equation satisfied by the undisturbed flow, and replace t by s-:T 
and y by s-:Y, etc. The result is 

a a  
p y ( ~ + p  G)} (&+&) = 0. (3.6) 

We may now introduce the approximate expressions (2.30) and (2.38) to represent the 
undisturbed (SWW) flow, and drop all but the leading terms under our scaling 
assumptions. The inner disturbance equation simplifies to 

(3.7) 

with relative errors O(p) and O ( d  log€). The only surviving factor involving Y is 
P&,/a Y ,  which by (2.32) is just - Y .  The remaining contributions from (2.38) are still 
negligible as far as their advective effects are concerned. Going through the 
corresponding procedure for the outer region, we find simply 

ygx + 6. = 0, where tj = V2$. (3.8u, b )  

The dominant relative error is O(s:), from neglecting the ag/’/aT and 6, aa/a Y terms.? 
The full two-dimensional Laplacian appears in (3.8b) because of the fact that the x- 
and y-scales for the instability are both A l p .  

It is noteworthy that a does not appear in (3.8) a t  all. The outer problem is linear, 
under our scaling assumptions, and the principle of superposition applies to the outer 

t This is the dominant formal error from the process of approximating the outer equation, but 
it should be added that we expect a very slightly larger relative error O(ei log e) in the leading-order 
outer solution to be obtained. This is not due to any term neglected in the outer e uation. Rather, 
it is induced by the inner vorticity distribution, whose relative error will be O(e2 loge) just as it 
is in (2.30). 

9 
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portions of the unstable disturbance and the SWW solution when both are regarded 
as disturbances to the original parallel shear flow. (This is why the he-grained outer 
structure does not enter the instability problem to this order.) By contrast, the inner 
equation (3.7) has nonlinear terms on its right-hand side, a consequence of the fact 
that so far has been allowed to be comparable in magnitude to 0, both being 
dimensionless quantities of order unity. Although, as it happens, the second term on 
the right of (3.7) is negligible to leading order, for reasons about to be explained, the 
first term is by no means negligible except in the early exponentially growing stages 
of the disturbance evolution. 

The second term on the right of (3.7) is negligible, even when the first term becomes 
important, for the same reason as was indicated earlier for the SWW solution. The 
expansion for p has the same structure as the expansion (2.38) for @, and the 
matching condition on the leading term po(z, Y, T) dictates, in essentially the same 
way as before, that this term is a function of x and T only: 

P&, y ,  T) = F&, TI. (3-9) 

This is the only' significant contribution to (the advective effects of) the disturbance 
stream function p, both on the left and on the right of (3.7), in precise analogy to 
the situation with already explained. 

The forms of (3.7) and (3.8) (together with the fact that growing solutions 
consistent with the implied scalings will indeed be found) imply that the nonlinear 
saturation of growing disturbances will take place in the inner region, as was asserted 
in $1.2, and that the disturbance will indeed reach amplitudes such that is 
comparable to unity, at  least in an order-of-magnitude sense. Moreover, numerical 
evaluation of the first nonlinear term on the right of (3.7), using the fastest-growing 
disturbances found from linear theory ($4), strongly indicates that nonlinearity 
cannot stop 0 from growing to amplitudes numerically 2 1, at least in some cases. 
This implies that substantial rearrangement of the SWW vorticity patterns shown 
in figure 2 must take place, on the timescale 8q-l. Details of these estimates are 
omitted, since they have been superseded (and their implications confirmed) by the 
quantitative calculations of nonlinear saturation amplitudes given in Haynes (1985). 
Note that, if we were to assume (naively) that the effect of the rearrangement is 
equivalent to that of an eddy viscosity compatible with the foregoing scaling 
relations, then its value would greatly exceed the values required to make the SWW 
solution into a viscous critical layer. This follows from the fact that fluid elements 
travel across the critical layer in a time of order 8q-l, which as already emphasized, 
is much faster than the time on which the SWW solution evolves. 

We now turn from order-of-magnitude considerations to an explicit consideration 
of the disturbance structure. 

Since (3.7) and (3.8) have z-independent (albeit &dependent) coefficients, the 
problem is locally (in z) a parallel-flow instability problem. It is therefore natural to 
represent the local disturbance structure by means of Fourier integrals. Thus, in the 
outer region, we assume that the leading-order disturbance is locally represented by 

and 

(3.10a) 

(3.10b) 
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The corresponding transforms @(k,y,T) and p0(k,T) will be used to represent 
&(x, Y ,  T )  and po(z, T )  in the inner region. From (3.8), 6 satisfies 

6 u u + ( i - k z )  1 6 = 0. 
(3.11) 

In  the absence of the boundary a t  y = Yb, an appropriate ( 1 y I-evanescent) solution 
to (3.11) would be 

C ( k ,  T )  I(&+ 1) U(&, 0, 2 1 ky 1) e-lkuI (y > 0), ( 3 . 1 2 ~ )  

) (2Ilkl 
e (k ,T)r( - -+l  1 U - , 0 , 2 ~ k y ~ ) e - ~ k ~ ~  (y<O) ,  (3.12b) 

21kl 

where r( . ) denotes the gamma function and U( . , . , . ) the second confluent hyper- 
geometric function, in the notation of Abramowitz & Stegun (1965). The expressions 
(3.12a, b)  decrease exponentially towards zero as y+f  co. To satisfy the boundary 
condition q$ = 0 a t  y = yb < co we must add to  ( 3 . 1 2 ~ )  a term proportional to 

lim ma)> - M{ - (2 I k I ) - 9 fl, 2 I ky I 1, 
u+o 

which cancels the contribution from U at y = yb. Here M denotes the first confluent 
hypergeometric function. However, we may neglect the M-term for present purposes 
since i t  was found to  change growth rates for the fastest-growing disturbances by only 
a few percent a t  most, in the cases considered, even when Yb takes its smallest possible 
value in (2.24). For the more distant boundary positions the effect is far smaller still, 
indeed utterly negligible vis-a-vis the numerical accuracy of the growth-rate 
computations to  be presented in the next section. The reason is the exponentially 
decreasing behaviour of ( 3 . 1 2 ~ )  as y increases towards Yb, and the exponentially 
decreasing behaviour of M as y decreases back towards 0. 

The coefficients in (3.12a, b )  have been chosen to  make 6 continuous across y = 0, 
as was done in (2.16). This is necessary to  match with (3.9). 

For small y, (3.12) reduces to  

@ m ( 1 - Y  logY+a>Y+O(Y210gY)) (Y ' O h  ( 3 . 1 3 ~ )  6 =( 
e ( k ,  T )  (1 + I Y I 1% I Y I +a< I Y I + O( I Y l2 1% I Y I )) (Y < O ) ,  (3.13b) 

where the coefficients 

a> = I k I-log (2 I k I ) -{ (5) +2y- l}, 
2lkl 

See e.g. (13.1.6) and (13.4.17) of Abramowitz & Stegun (1965). Here y is Euler's 
constant as before, and 

4 1 = r( )lr( )> (3.14) 

the logarithmic derivative of the gamma function, more usually denoted by $. Note 
that to match with (3.9) we have 

C(k, T )  = P@, T) ,  (3.15) 
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where po(k, T) is the Fourier transform of po(x, 5"). Furthermore, (3.13) shows that 
the Cauchy principal value of the jump in the y-derivative 6, across y = 0 is 

(3.16) 

The last step uses the fact that 

1 

P 
from (6.3.5) and (6.3.7) of Abramowitz & Stegun (1965), or from logarithmic 
differentiation of the well-known formula r(p) r( - p )  = -p-% cosec (px). It follows 
that, in order for q! to match the corresponding Fourier component of the inner 
solution, the latter must satisfy 

V ( p ) - v ( - p ) + - = - 7 t c o t ( p R ) ,  

(3.17) 

As before, this result can be verified from the matching rules, in the same way as 
(2.34). 

The problem has now been reduced to solving the Fourier transform of 

(3.18) 

the relevant simplification of (3.7), with po(k, 2') given by (3.15) and (3.17). In  the 
next section we establish that this problem admits exponentially growing solutions 
when the right-hand side of (3.18) is neglected, and calculate some representative 
growth rates. The work of Haynes (1985) extends these results to the fully nonlinear 
problem in which the right-hand side of (3.18) is not neglected. For the occurrence 
of instability it is necessary that 

P>%=+7t (3.19) 

(the right-hand side being the dimensionless counterpart of ti in figure l) ,  since 
otherwise the basic (SWW) absolute vorticity gradient ( Y + & l ) y  appearing in (3.18) 
is monotonic. In that case the analogue of Rayleigh's inflection-point theorem rules 
out unstable solutions of the type considered here, the situation shown in figure 2 ( a )  
being a case in point. We note in addition that Haynes (1985) uses a variant of the 
Tollmien-Lin argument to prove that (3.19) is also a suficient condition for instability 
when the boundary is at a sufficiently large distance yb. 

4. Linear instability and maximum growth rate 
Neglecting the right-hand side of (3.18) we obtain a linear problem, so that 

attention can be restricted to a single Fourier component. Taking g ( k ,  T) and C(k,  5") 
both proportional to exp (-ikcT), substituting this into (3.15) and into the Fourier 
transform of (3.18) with the right-hand side neglected, and using (3.17), we get 

a(Y+Q,)  -- dY - 7t cot (5). 
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Y Y 

FIGURE 4. Two sample profiles across the critical layer (solid curves) of minus the basic (SWW) 
relative vorticity, - ol, calculated from Stewartson’s elliptic-function solution, and plotted on the 
same scales aa the undisturbed absolute-vorticity profile (dashed lines). The accompanying sketches 
of the overall cat’s-eye configuration show where the cross-sections are taken. The tick marks on 
the Y-axes show the positions of the bounding streamline or ‘cat’s eyelid’ on each section. 
Note the reversed gradients of Y + o l  within the cat’s eyes. The times correspond to those of 
figures 2 (c), (d).  The accompanying sketches also show schematically the absolute vorticity contour 
through the centre of the cat’s eye (fof: the precise shapes see figures 1 e ,  d) ,  while the shading 
indicates the main regions of positive Q1 contributing to the Cauchy-principal-value integral in 
(2.34). The right-hand sketch corresponds to near-perfect cancellation in the first Fourier 
component, (2.35) with ?z = 1, of that integral, which in this problem implies a state of near-perfect 
reflection. 

The mathematical problem posed by (3.15), (3.17) and the linearized version of (3.18) 
has thus been reduced to solving the transcendental equation (4.1) for the unknown 
eigenvalue 

c = Rec+i Imc = cr+ici ,  

say. 
Typical examples of the Y-dependence of - Q, are shown as the continuous curves 

in figure 4. The sloping dashed lines show the undisturbed absolute vorticity gradient, 
whose dimensionless value is unity ; the existence of regions where - a&,/a Y > 1 
implies changes in the sign of the absolute gradient ( Y + & J Y .  It is easy to see 
graphically that such profiles admit eigensolutions with complex values of the phase 
velocity c, implying exponential instability. For instance one may note the qualitative 
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p= 1.5.\/2: 
f - t x  

k 1.61 

Ci 0.154 
kCi 0.247 

2 

k 2.52 

ci 0.245 
kci 0.618 

f 

k 6.43 
Cr 0.50 
ci 0.139 

CT -0.67 

p=2 . \ /2 :  

CT -0.06 

p=3.\ /2:  

kci 0.891 

-ill 

1.53 

0.273 
0.418 

-0.13 

2.20 
0.43 
0.379 
0.835 

4.07 
1.02 
0.280 
1.139 

- fx  0 fx fx fx 
1.40 1.25 1.09 0.95 0.84 
0.20 0.35 0.43 0.58 0.91 
0.382 0.435 0.398 0.290 0.163 
0.536 0.542 0.434 0.275 0.137 

1.87 1.59 1.34 1.11 0.92 
0.66 0.63 0.48 0.41 0.60 
0.525 0.610 0.586 0.459 0.305 
0.982 0.967 0.783 0.508 0.282 

3.18 2.78 1.62 1.54 1.16 
1.30 1.27 0.45 0.21 0.18 
0.392 0.400 0.576 0.518 0.293 
1.244 1.112 0.931 0.798 0.339 

TABLE 1.  Maximum growth rates kc, at various stages of development of the SWW solution 
(!.?Id2 = 1.5,2,3, corresponding to figures 26, c, d respectively), and at various positions along the 
SWW cat’s eye. Note that i = 0 is at the centre of the cat’s eye and that $3 = fx are at its corners. 

shapes of the graphs against Y of the real and imaginary parts of the factor ( Y - c)-l 
in the integrand of (4.1). The real and imaginary parts are respectively odd and even 
functions of Y-c,, whose shapes are invariant apart from shifts of origin (as c, is 
varied) and of scale (as ci is vaned). If the Y-scale is narrow enough (ci not too large), 
then it is easy to see that the origin may be shifted so as to make the imaginary part 
of the integral in (4.1) vanish, by taking the point Y = cr somewhere near the location 
of a sign change in ( Y + o , ) y .  The real part of the integral will then agree with the 
real-valued function on the right-hand side of (4.1) for some I k 1, since the right-hand 
side runs through all real values as I k I varies. Indeed, the form of the right-hand 
side shows that there are an infinite number of such 1 k 1’s; the largest will give the 
fastest growth rate 1 k I ci. See also Haynes (1985, $2). Arguments of this kind can 
be developed to predict a number of interesting properties of the spectrum of 
instabilities, but we omit them for brevity since our main purpose is simply to 
establish the existence of substantial growth rates, and then to return to the question 
of possible implications for the evolution of the basic critical layer. 

To find quantitative solutions, Stewartson’s elliptic-function solution was used to 
generate numerical tables of 8, for use in the left-hand side of (4.1), while the 
contributions to the integral for large Y were handled analytically using the 
asymptotic solution (2.33). Table 1 presents some typical results, confining attention 
to the fastest growth rates kci found for a given Q, configuration. The program which 
produced these results was spotchecked against some ‘brute force ’ numerical 
solutions of the linear instability problem, using a Taylor-series ordinary differential 
equation solver (and without using matched asymptotic expansions). The results have 
been checked yet again by the independently programmed calculations of Haynes 
(1985). 

It is interesting that many of the dimensionless growth-rate values shown in table 1 
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approach or exceed unity. This implies that the quantity dq defined in (3.5) is not 
only a nominal scale for growth rates, but is also a reasonable guide numerically, 
unlike what is often found in other shear-instability problems. 

Many of the associated k-values are considerably in excess of unity, showing that 
the fastest-growing instabilities often have a somewhat smaller radian wavelength 
than the nominal scale A / p  (itself much smaller than the SWW lengthscale kl). The 
fact that these fastest-growing k’s are not too small numerically, together with the 
known asymptotic behaviour of the second confluent hypergeometric function, helps 
to account for the fact, mentioned earlier, that the results are hardly changed by the 
presence of a boundary even at the closest possible position allowed by (2.24). Even 
in the latter case, i t  was found that most of the numbers in table 1 do not change at 
all, the only exceptions being the smallest values of k, for which the disturbance 
structure reaches furthest into the outer flow. In  those cases, growth rates go down 
slightly (in a few entries at  the top right of table l ) ,  by amounts of the order of a 
few percent. 

The demonstration that maximum growth rates have substantial values is sufficient 
for our purposes. However, this does not mean that modes having different values 
of k could not be important physically. For example, smaller values of k may have 
slower growth rates but may, on the other hand, reach larger saturation amplitudes, 
or lead to substantial vorticity rearrangement in a different Y-interval. They could 
thus be important in modifying the evolution of the critical layer. Evidence that this 
may indeed be the case is provided by the fully nonlinear calculations of Haynes 
(1985). One of the interesting properties of (4.1) is the form of the right-hand side, 
which implies, as already mentioned, that for any given eigensolution there will be 
an infinite sequence of further eigensolutions with smaller values of I k I and the same 
value of c. A finite number of these may be consistent with the scale assumptions 
and boundary constraints. (The smaller the value of I k l ,  the more important the 
boundary constraint and the less justified the neglect of the M contribution to 
(3.12a).) The eigensolutions in question have successively smaller growth rates, since 
Ikl is smaller and c the same. But, again, some of them might grow to larger 
amplitudes if boundary constraints permit. 

Finally, we note that the disturbance structures implied by these unstable 
eigensolutions are, indeed, qualitatively like those occurring in BQland’s numerical 
simulations of Rossby-wave critical layers, particularly the simulation reported in 
BBland (1976), which had the best resolution in the y-dimension. Figure 4 suggests 
that this would have been the most difficult dimension to resolve numerically. Bdand 
presented a series of simulated streamline patterns, of which three are reproduced 
in figure 5. Note that the short-wave disturbances in BBland’s figure extend well 
outside the cat’s eyes, with wavy streamlines and imperceptible phase tilts, just as 
predicted by the real-valued outer solution (3.12). The waviness penetrates further 
out to the positive-y side (positive basic-flow velocity) than to the negative side. Our 
solutions have the same property, as can be seen for instance by inspection of (3.11). 
In BBland’s cat’s-eye region there are clear indications of the presence of closed 
streamlines on the disturbance 2-scale, implying local nonlinearity. Again, this is 
precisely as expected from (3.18). 

It should be cautioned that disturbances with this structure could conceivably arise 
from a different mechanism, namely resonant amplification, if boundary conditions 
and parameter values happened to be tuned in such a way that the appropriate 
harmonics of the basic Rossby wave were close to resonance (Warn & Warn 1978; 
Ritchie 1985). Inspection of figure 5 suggests that more than one harmonic would 
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c --x 

- 
(4 (b) (4 

FIGURE 5. The last three panels from figure 4(e) of BBland (1976), showing the stream function at 
three successive times for a fully nonlinear numerical simulation of a Rossby-wave critical layer, 
the same simulation as the one referred to in figure 1.  Perfect reflection was first achieved at around 
the time corresponding to the middle panel. 

have had to be close to resonance, in this case, in order to account for the short-wave 
disturbance seen there. This is in contrast with the cases studied by Ritchie (1985), 
in which only one harmonic was amplified significantly. It would be interesting to 
repeat Bbland's simulation with more detailed diagnostics in order to check the point. 
We note also that the value of ,u in the simulation was 0.25 in our units. A question 
might therefore be raised as to whether the assumption p < 1 was sufficiently well 
satisfied and in particular whether there was sufficient time for the instability 
mechanism to operate in the simulation. It is not known at what finite values of p, 
if any, the instability mechanism might be suppressed, but the large dimensionless 
growth rates found in table 1 suggest to us that such suppression would not be very 
likely at  ,u = 0.25 although, again, the question merits further investigation. 

5. A finite-amplitude conservation theorem for Rossby waves and other 
disturbances to a parallel shear flow 

We now return to the question of what can be said about the consequences of the 
instability, recalling that in many cases where it arises, and in many other cases of 
interest, the possibilities are restricted by the bound (1.3) on the time-integrated 
absorptivity. The general proof of (1.3), to be given in $$6 and 7, depends on a 
finite-amplitude conservation theorem, which we establish first, in this section, on 
the assumption that the model equations (2.1)-(2.5) continue to hold, and then, in 
$7, in a more general form allowing for diffusion and other forms of vorticity 
transport. 

There are two mathematical obstacles to a proof of (1.3) more general than that 
given in $ 1.4. The first is the one already mentioned there, and illustrated by the 
large-Y behaviour of (2.33). This is the fact that vorticity rearrangement is not 
generally confined to a central region of width comparable to the true ' mixing width ' 
b ,  defined by (1.13), and exemplified by the size of the bar at the centre of 
figure 2 (d). Some vorticity rearrangement may go on in a far wider region, which may 
include the entire outer region, as implied at the end of $2. The typical magnitude 
of the vorticity fluctuations may die off as slowly as O(y-'), with disastrous results 
for simple estimates of the right-hand side of (1.7). The second and related difficulty 
is that, even if there were no permanent rearrangement of vorticity outside the central 

16 PLM 161 
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region, we would still want to be able to  deal with an x-dependent state in which the 
contours of constant absolute vorticity q, i.e. material contours, undulate in some 
manner throughout a relatively large region. The simple argument of $1.4 is 
applicable only if such undulations have died away altogether outside the mixing 
region, and so can a t  best apply only a t  t = 00, and then only in the case where the 
incident Rossby wave has died away to zero after a certain time. 

A way round these obstacles is provided by the use of the conservation theorem 
to be proved here. The essential idea can be quickly appreciated by recalling some 
well-known properties of the model equations (2.1)-(2.5). We revert to dimensional 
variables since the results to be obtained do not depend on taking any particular 
parameter limits, such as the small-e limit involved in the matched-asymptotic 
theory. As in 5 1.4, an overbar will denote the Eulerian mean in the 2-direction. This 
is assumed to be well defined so that 

a -  a - (  ) = - (  ) = O  ax ax 
for all quantities ( ) of interest. Subscript zero will denote the initial fields, which 
are functions’of y alone. Thus qo(y)  will denote, as before, the initial absolute vorticity 
field, and u o ( y )  the initial shear flow. Departures from the Eulerian mean will be 
denoted by primes, as before, and departures from the initial fields (‘excess values’) 
will be denoted by subscripts ‘e’. Thus, for instance, 

q(z, y, t )  = q(y, t )  +q’(x, y, t )  

= Q O ( Y )  +qe(x ,  Y, t ) .  

(5 .2)  

(5.3) 

Now consider the following two well-known consequences of (2.1)-(2.5). First, 
equations (2.3)-(2.5) imply the exact identity 

a -  - 
- (u’w’) = - w’q’, 
aY (5.4) 

as is easily verified using (5.1). Second, (2.1), Dq/Dt = 0, after linearization about 
either the initial or the Eulerian-mean state, implies the small-amplitude relation 

Both results were noted and used by Taylor (1915). I n  (5.5)’ 7 is the y-displacement 
of a fluid element from its initial position, and qoy denotes the gradient dq,/dy of 
the initial vorticity profile qo(y). Equations (5.4) and (5 .5)  imply the x-averaged 
conservation relation 

a a -  
- ($qoy?)-- (u’v’) = 0 
at aY 

for inviscid, small-amplitude disturbances. Terms of the third order or higher in 
disturbance amplitude have been neglected. This conservation relation is a special 
case of what may be called a ‘generalized Eliassen-Palm relation’ (e.g. Edmon et al. 
1980, and references). If we integrate it over any prescribed region 

Y1 G Y G Yz, (5.7) 
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and over time from 0 to t ,  we obtain the following (approximate) expression for the 
time-integrated absorptivity a(t) : 

The right-hand side is bounded whenever 7 and qOu are bounded in the region 
y1 < y < yz. Moreover, it is convergent for large yl, yz. For the SWW solution, q2 
diminishes away from the central region like I y and qoy = B = constant, which 
is bounded. For any similar problem in which the incident Rossby wave is switched 
on less abruptly we expect q2 to be smaller still, if anything, for large I y 1. So we expect 
no trouble at the periphery of the y-integration, no matter how large the interval 
(yl,y2). There is no such simple way of bounding the integral on the right of (1.7) 
when its limits of integration are large. 

To turn this idea into a rigorous proof, we need an exact, finite-amplitude version 
of the generalized Eliassen-Palm relation (5.6). This can be obtained, for the 
non-diffusive case, if we define 7 appropriately and work at first with qe,u,, etc. 
instead of q',u', etc. The mathematical device used is the same as that used by 
Holliday & McIntyre (1981) to obtain an exact, positive-definite expression for 
'available potential energy' in an incompressible, stably stratified fluid, but its 
application to Rossby waves appears to be new. Its use was suggested by the form 
of the expression +qoyq, which is the same as the small-amplitude expression for 
available potential energy when y is vertical and qo(y) represents the basic density 
stratification. 

Consider the fluid element which finds itself at (2, y) at time t .  Let the y-coordinate 
of this element in the original, undisturbed shear flow be denoted by yo(", y, t ) .  Then 
7 is defined by 

That is, 7 is the y-displacement of a fluid element in the usual sense, except that it 
is expressed as a function of the present rather than the initial position of the fluid 

y = yo(G y, t )  + 7@, y , t ) .  (5.9) 

e1ement.t We then have 
v=1)  =-= DY W - Y o )  - D7 

Dt Dt Dt ' 
(5.10) 

where as before D/Dt = a/at + u a/& + v Also 

because of the fact that Dq/Dt = 0. Now define 

(5.12) 

A(y,q) is a known function of y and 7, for any given initial vorticity profile qo(y) .  
It reduces to iqou72 when 7 is sufficiently small and qo(y)  is a smooth function. It 
has the property that 

t P. B. Rhines haa suggested to us that the two functional forms be distinguished from each other 
by calling them 'arrival' and 'departure' displacements respectively. Thus the present ~(s, y , t )  is 
an 'arrival displacement'. It is related to the idea of 'arrival diffusivity' used for instance by 
Haidvogel & Rhines (1983). 

16-2 



478 P.  D .  Killworth and M .  E .  McIntyre 

as is easily verified. The right-hand side is equal to -qe,  by (5.3) and (5.11). Hence, 

a a a 
at a Y  
- A(y, 7) +G { -+u: +i~: + (u0 + u,) A )  +- { - U, O, + ve A )  = 0. 

from this and (5.10), D 
A(Y, 7) = -We q e ,  

(5.17) 

(5.14) 

the x-average of which may be compared to (5.5). Although it will not be used here, 
we note for completeness the alternative functional form 

A = A(qo,qe) = Joqe { % ( q o + ~ e ) - % ( q o ) ~ ~ e  (5.15) 

expressing A in terms of the values of qe and qo a t  a given place and time, where g(qo) 
is the function inverse to qo(y) ,  assumed monotonic. This purely Eulerian form is 
possible, as Holliday & McIntyre point out, because by (5.11) q contains all the 
Lagrangian information relevant to (5.12), when qo(y)  is monotonic and Dq/Dt = 0. 
This provides an alternative route to (5.14), as is easily checked. It is emphasized, 
however, that since we shall use the form (5.12) we shall not need to assume that 
qo(y)  is monotonic. 

The right-hand side of (5.14) suggests that  we use the following analogue of (5.4) : 

a a 
a Y  
- (U,",)+,, (+u:-+v:) = - v ,q , .  (5.16) 

6. Proof of the bound (1.3) in the non-diffusive case 
We now choose, as before, some fixed interval 

Y1 G Y G Y2 
in terms of which to define the time-integrated absorptivity 

a(t) = J: [u"]% dt. 

This will usually be taken to enclose the central critical-layer region by some suitable 
margin. The best choice will depend on the problem of interest. In  particular, i t  will 
depend on the amplitude of the incident Rossby wave, which determines the width 
of the central region within which substantial rearrangement of vorticity takes place. 

t Note added in proof: This case has previously been noted by Rhines (1977). It has also come 
to light t,hat the general finite-amplitude expression (5.15) is implicit in an important but largely 
overlooked paper by Arnol'd (1966) on nonlinear hydrodynamical stability. The connexion will be 
discussed in a forthcoming paper by McIntyre t Shepherd (1986), together with the interpretation 
of expressions like (5.15) when tY(po) is not monotonic. 
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As mentioned earlier, that width may be a sizeable fraction of the whole flow domain 
in some large-amplitude cases of meteorological interest. 

The assumptions needed in order to bound (6.2) are that the incident Rossby wave 
have bounded amplitude, and that conditions (i)-(v) of Q 1.3 hold good. The meaning 
of ‘bounded amplitude’ can now be made precise in terms of the displacement 
function ~ ( z ,  y, t )  defined in (5.9). The essential requirement is that, within the fixed 
interval (yl, y2), the displacement ~ ( x ,  y, t )  be uniformly bounded for all t, i.e. that 

IT(%Y,t) l  G B (Y1G Y < Y2) (6.3) 
for some constant B. For amplitudes that are not too large, a stronger assumption 
of the type 

IT(”,Y,t)IGB (- iB<Y<iB) (6.4a) 
together with 

(6.4b) 

may be appropriate. This will lead to a sharper bound than (6.3). The stronger 
assumption (6.4) holds true of the SWW solution, for instance, if the boundaries of 
the central region -4B < y < fB are taken to be tangent to the extremities of the 
cat’s eyes, so that B is identified with the maximum width of the cat’s eyes. In  general 
we shall assume that 

B2 
I T ( 2 ,  Y, t)  I G - (yl < y < - fB or i B  < y G y2) 

41Yl 

I T k  Y, t )  I G TJY) (Y1 < Y < Y2) (6.5) 

for some fixed, bounded function qc(y). We shall also assume that the associated 
values of q, namely qo(y--r]), see (5.11), are themselves bounded, for y1 < y < y2. 

This latter assumption, together with (6.5), means that the factor dqo/dy in the 
integrand of (5.12) is either bounded or contains delta functions of finite strength. 
We exclude qoa, profiles more pathological than that : to be precise, we allow no more 
than a finite number of delta functions. The function A(y, 7) defined by (5.12) is then 
self-evidently bounded, under (6.5). 

Conditions (i) and (ii) of $1.3 are already expressed by the model equations and 
require no comment. Conditions (iv) and (v) are satisfied trivially in the present, 
non-diffusive case (provided that the initial profile qo(y) is finite valued, as is implied 
by the assumption just made). Condition (iii) states that ‘the critical layer always 
consists of the same material fluid elements’. This implies that there is a frame of 
reference in which the critical layer does not drift sideways and in which there is no 
net mass flux across a line y = constant. We shall adopt this frame of reference so 
that, in particular, @ = v , = O  (6.6) 

and 21’ = 0, = v. (6.7) 

Consequently m=Tqq2),, (6.8) 
and we can use (5.18). Note that the assumption that there is no net mass flux across 
a line y = constant is consistent with the assumption (6.5) that I ~(z, y, t )  I is uniformly 
bounded for all t .  Since 7 has been defined as the displacement from the initial y-position 
of a fluid element, and not from any kind of mean position, 7 would include any mean 
sideways drift that occurred. 

The construction of bounds on a(t) now proceeds in almost the same way as was 
suggested by (5.6) and (5.8). From (5.18), (6.2), (6.7) and (6.8) we have 
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This is the exact result corresponding to (5.8). Just  as with the right-hand side of 
(5 .8) ,  i t  is straightforward to  bound A(y,q) given our assumptions, as already 
indicated. The only remaining problem is the extra term 

and its counterpart for y = yz, appearing on the right of (6.9). It is crucial to  be able 
to bound these terms uniformly for all t ,  despite the arbitrarily long integration time. 

We can do this by using the fact that A, by definition, is a function of y and 7 
alone, together with incompressibility and the boundedness of ~ ( x ,  yl, t )  and ~ ( x ,  y2, t )  
implied by (6.3), (6.4) or (6.5). We have 

I 7(x, y1, t )  I G 71, I 7(x, Y2, t )  I G 7 2  9 (6.1 1 )  

say, where v1 and y2 are constants, respectively qc(yl) and yC(y2) if (6.5) is assumed, 
B2/4 I y1 I and B2/4yz if (6.4) is assumed, or both equal to  B if (6.3) is assumed. I n  
view of the definition of 7, this says that any fluid element crossing the line y = yl, 
say, must have originated from somewhere in the interval 

Y1-71 G G Y 1 + 7 l ?  (6.12) 

and similarly for an  element crossing the line y = y2. Now, if a given fluid element 
having area dm and initial position yo crosses the line y = yl, i t  will make a contribution 

4 Y ,  7) dm (6.13) 

to the double integral on the right of (6.10), with y evaluated as y1 and 7 as yl-yo. 
Moreover, if the same element subsequently re-crosses the line y = y1 in the other 
direction, there will be a further contribution to  the double integral that exactly 
cancels the previous contribution. Both y and 7 take exactly the same values, respec- 
tively y1 and yl-yo, on each occasion when the fluid element crosses or re-crosses 
the line y = yl. Thus no matter how large t becomes, each fluid element can never 
make more than one contribution A(y, 7) dm to the double integral on the right of 
(6.10). 

Now consider the total area jdm occupied by those fluid elements which were 
initially in the interval (6.12) and which might therefore contribute to (6.10). This 
area is 27, per unit x-distance. It follows that 

lpml G271 SUP l 4 Y l , 7 ) l ,  (6.14) 

and similarly for y = yz. The right-hand side represents a finite a priori bound. The 
supremum is taken over values of the function A(y, q ) ,  and that function is (a) known 
a priori, for any given initial profile qo(y),  and ( b )  takes finite values, under the 
assumptions made earlier in the paragraph containing (6.5). 

We can now obtain bounds on a(t) itself, using (6.9) and (6.14) together with (6.3), 
(6.4) or (6.5). From (6.5), for instance, we immediately obtain a bound in the general 
form 

Y-Yl lrll drll 

14) I G amax = 
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Simpler expressions representing less sharp bounds can easily be deduced at  need, 
depending on the nature of the qo(y) profile and on how much more information we 
are prepared to throw away. For example, if the initial gradient 

I qov I G K (Y1 G Y G Yz), 

where K is a constant, then from (5.12) we have 

(6.16) 

I 4 Y 9  7) I G mJZ. (6.17) 

If, further, (6.4) is assumed, then substitution into (6.15) gives 

Note in particular that the bound, and therefore a(t)  itself, is zero if the bound K on 
qov is zero. That is, if no (potential) vorticity gradient exists in the critical layer, and 
if all the relevant conditions of $ 1.3 are satisfied, then, as already mentioned in $ 1, 
the critical layer is a perfect reflector for all time t .  

The same conclusion can be reached from (2.34)-(2.36), in cases where the standard 
(matched-asymptotic) critical-layer theory applies, since 0, + Y would be independent 
of x if qov were zero throughout the inner region. 

It will be noticed that the simple bound (6.18) is much less sharp than (1.12). The 
same is true of (6.15). This is mainly because, for the sake of simplicity, we have 
thrown away information about the kinematically possible distributions of 7 within 
the critical layer. Those distributions are restricted by incompressibility, which 
implies in particular that not all the fluid elements can have their maximum possible 
values of simultaneously. However, although refinements taking this into account 
are clearly possible we shall not pursue them here, both for the sake of brevity, and 
also because a truly sharp bound is not to be expected in any case, for the reasons 
explained below ( 1.10). 

7. The finite-amplitude conservation theorem and the bound (1.3) in the 
‘ diffusive ’ case 

We now take up the wider implications of conditions (iv) and (v) of $1.3. 
Condition (v) says that q has a bounded range of values, for all t ,  in the central region 
of the critical layer where non-advective transport may take place. The way in which 
this enters the heuristic argument given in $1.4 suggests that the bound (1.3) does 
not really depend on having no non-advective transport. 

The same conclusion can be reached from the following consideration, which also 
serves to motivate the subsequent rigorous proof. For the purpose of evaluating an 
integral in which q appears linearly, like the right-hand side of (1.7),  downgradient 
transport processes like diffusion can be thought of as equivalent to rearrangement 
of p by a hypothetical, ‘fine-grain’ velocity field varying on very small lengthscales. 
(In the case of ordinary diffusion, the fine-grain motion may be modelled in terms 
of a random walk, and there are many other possibilities.) If the y-excursions involved 
in the hypothesized fine-grain motion are bounded, as they would generally have to 
be under condition (v), then A can evidently be bounded in just the same way as 
before. We may simply regard the displacement field 7 as including the fine-grain 
motion; it is still bounded and, therefore, so is I a(t)  I. 

Although the foregoing consideration makes the diffusive version of the result 
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intuitively plausible, and could probably be made into a rigorous proof, it is not 
straightforward to express mathematically since the functions describing the arbit- 
rarily he-grained velocity and displacement fields would be of an extremely 
pathological kind. While this difficulty seems to be no more than a technical one, it 
would nevertheless seem desirable to possess a proof in which the use of such functions 
is not resorted to. It is, in fact, possible to recast the problem so that only 
mathematically well-behaved functions are used. That is the purpose of the present 
section. A bonus will be that the conditions under which a conservation relation like 
(5.17) can be obtained are widened still further, so as to include the possibility of an 
arbitrary time-integrated vorticity transport, whether downgradient, upgradient, or 
unrelated to the gradient. It will be found, as expected, that the bound (1.3) holds, 
provided always that the transport is not so persistently upgradient as to violate 
condition (v) that the range of values of q stays bounded. This is related to the fact 
that upgradient transport can be thought of, if desired, as due to a hypothetical 
he-grain rearrangement process in which a suitably chosen initial he-grained 
arrangement is ‘undone’, so that the fine-grain spatial fluctuations in q are reduced 
in intensity by the hypothesized fine-grain motion. 

The reader should recall at this point that some models of the mean effects of 
three-dimensional turbulence can, in fact, exhibit upgradient vorticity transport, for 
instance models in which the associated momentum transport is taken to be 
equivalent to the effect of a (spatially variable) eddy viscosity.t Whether a given 
turbulent transport model would satisfy condition (v), or not, can be answered only 
by a detailed consideration of that model. Regarding eddy-viscosity models, as 
usually understood, these imply a very special, and possibly unrealistic, relation 
between momentum flux and strain rate, in which momentum is everywhere 
transferred strictly down its gradient. As far as we are aware it is still an open question 
whether such a relation is actually a good model of real three-dimensional turbulence. 
In reality, the direction of transfer might be at a highly variable angle to the mean 
gradient. It could also take place in the absence of any mean gradient. There is 
certainly a strong presumption that downgradient momentum transfer is a bad model 
of real two-dimensional turbulence, such as is of interest in astrogeophysical 
applications (e.g. Starr 1968). There, downgradient (potential) vorticity diffusion is 
expected to be a better model, if anything, than downgradient momentum diffusion 
(e.g. Green 1970; Rhines 1979), although care must be taken, as always, to see that 
the model does not tacitly assume the existence of local sources of momentum. 

To make sure of this last point while retaining a degree of generality commensurate 
with conditions (iv) and (v), and avoiding any kind of eddy-viscosity or other special 
assumption about turbulent stresses, we take as our starting point the momentum 
equation in its general two-dimensional form 

at, f U j  = - - ap + 2% (i ,j  = 1,2), -- Du, 
Dt ax$ ax, 

where repeated suffixes are summed and where ut, represents a stress, ‘turbulent ’ or 
otherwise, whose dependence on other variables will be left arbitrary for the moment. 
A Coriolis term is included, with the Coriolis parameter f a function of x, so that model 
fluid systems of astrogeophysical interest continue to be included. The two-dimensional 

t A simple but sufficient example is that of a straight viscous jet surrounded by inviscid fluid. 
As time goes on, vorticity tends to become more and more concentrated at the edges of the viscous 
region. 
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alternating tensor eij is defined by ell = E~~ = 0, e12 = -e21 = 1. The notations 
( x ,  y) = x = (q, x 2 )  will be used interchangeably. Incompressibility is assumed, as 
before, and (2.5) may be written 

(7.2) 

If we operate on (7.1) with eki  a / a x k  and use (7.2) we get the relevant form of the 
vorticity equation : 

Dq - + V * F =  Dt 0, (7.3) 

where F . = - e  3 ka .(T 65,  k '  (7.4) 

Here ( ) denotes a( ) /ax , .  The definition of q is 

!? = f + E k 6 U f , k *  

The fact that the second term in (7.3) takes the form of the divergence of a flux F 
shows that, in any model governed by an equation of the form (7.1), q is transported 
conservatively. That is, q cannot be created or destroyed by the effects of the stress 
gtj, but is always redistributed in some way, the integral of q over an appropriate area 
remaining constant. 

To describe that redistribution in a sufficiently general manner, we consider the 
contribution to q(x, t )  which originated from the strip lying between y* and y,, +dy, 
in the initial state. Denote the contribution in question by 

P(X7 t ;  Y*) qo(Y*) dY*. (7.5) 

Then q(x,t) = JP(xA Y*)40(Y*)dY*. (7.6) 

J P W ;  Y*)dY, = 1. (7.7) 

The range of integration in which P =I= 0 represents those parts of the initial domain 
from which q at (x, t )  is supposed to have been transported. They will all be located 
within a strip of finite width, under conditions (iv) ff. of 5 1.3. We shall choose P such 
that 

This this is possible will be shown below. Note that in the non-diffusive case, with 
advective transport only, we can take 

P ( X ,  t ; Y*) = ay*  -Yak t ) ) ,  (7.8) 

which reproduces (5.11) when substituted into (7.6). 

denoted by 
The corresponding contribution to the non-advective vorticity flux F will be 

R(x, t ;  Y*) qo(Y*) dY* 7 (7.9) 

so that 

where 
D 
Dt - P(x, t ;  y*)+V*R(x, t ;  y*) = 0 

for fixed y*, and where, consistent with (7.7) and (7.11), 

(7.10) 

(7.11) 
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and 

The fact that R can be chosen to satisfy (7.12) will also be shown below. 
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R = 0 for all x, t such that F = 0. 

Now consider the quantity 

a 
ay + - { - U , W , + W , ( A ) + ( S ) , + ~ , , )  = O .  

(7.13) 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

(7.19) 

where R, is the y-component of R. Noting also that, with y* constant, 
DA(y,y-y,)/Dt = waA(y,y-y,)/ay, and using (5.10), (5.13) with y* in place of yo, 
(7.4) withj = 2, (7.6), (7.7), (7.10) and (7.12), we may rewrite (7.17) as 

(7.18) 

Recalling the identity (5.16), we deduce the 'diffusive' generalization of the finite- 
amplitude conservation relation (5.17) : 

Now gij and (S) vanish outside the central region, by condition (iv) ff. of $1.3. 
Therefore if yl+vl and y2-q2 are chosen to lie outside that region, where r ] ,  and r ] ,  
are the amplitude bounds appearing in (6.11) ff., we immediately obtain results 
analogous to  (6.9), (6.15), etc. by integrating (7.19) in place of (5.17). Note that (7.8) 
and (7.15) may be used when evaluating boundary terms like (6.10), or indeed 
anywhere outside the central region, and that the boundary-term estimate (6.14) 
therefore still applies. Thus we obtain (6.15), for instance, with the sole change that 
(A) (x, t )  replaces A{y, ~ ( x ,  t ) }  in the first term on the right, over some range of 
integration covering the central region. This bounds a(t)  just as before, provided that 
the quantity (A) defined by (7.14) can be bounded within the central region. 

Again, one can do this to varying degrees of refinement, depending upon how much 
information one is prepared to throw away for the sake of getting simple-looking 
inequalities. A key step will be to note that any vorticity redistribution satisfying 
condition (v) of 5 1.3 can, in general, be represented in the central region by a bounded 
redistribution function P. Then (A) and hence a(t) can again be bounded by simple 
estimates. 
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For instance, suppose for the sake of definitiveness that the central region lies 
within the interval -+B < y < iB ,  where B is a constant. By definition, this means 
that all fluid elements affected by the non-advective vorticity transport remain within 
the interval ( -+B,  i B )  for all time t. As already indicated, we must then choose y1 
and y2 such that 

Y1+% < -iB, P < Y2-72. (7.20) 

Given conditions (iii) and (iv) of 5 1.3, and the assumption of bounded wave amplitude 
(in the particle-displacement sense of $6), one can always find constants B, yl, y2, ql, q2 
such that the foregoing statements are true. Now, for a fluid element in the central 
region I y I < +B, the range of integration with respect to y* in (7.14) may be taken 
to be ( - iB ,  +B) .  Anticipating the boundedness of P, suppose that 

B I P ( x , t ; y * ) I < C  forall I y l < + B ,  I y , l < i B  (7.21) 

(and for all x, t ) ,  where C is a finite constant. C is dimensionless and may generally 
be expected to be of order unity, for consistency with (7.7). Then, from (7.14), 

(7.22) 

(and for all x, t ) .  The analogue of (6.15) which now follows from (7.19) can be written 

p?B 

(7.23) 

where qC(y) is the amplitude bound which applies outside the central region, as in 
(6.5), and ql, 7, may be identified with r],(yl) and rc(y2) as before. 

It remains to verify that functions P(x,  t ; y*) and R(x,  t ; y*) can indeed be chosen 
so as to satisfy the foregoing conditions, particularly (7.7), (7.12), and boundedness 
of I PI, for all x and y, belonging to the central region. The possibility of being able 
to choose P and R in this way is immediately plausible from the fact that their 
functional dependence upon y* adds an extra dimension to the space on which they 
are defined, as compared to the space {x, t }  on which the functions q and F themselves 
are defined. Clearly this allows an enormous latitude of choice, which, indeed, we have 
already exercised in using (7.8) and (7.15) outside the central region (in the second 
and third lines of (7.23)), and (7.6) with I PI bounded inside i t  (in the first line).? This 
latitude of choice reflects the fact that there is no way of distinguishing vorticity 
transported from one place from that transported from another, once the transport 
has taken place. However, it might be thought that the conditions (7.7) and (7.12), 
which correspond to incompressibility of the equivalent fine-grain rearrangement, 

t We note that P has therefore been taken to behave discontinuously whenever a fluid element 
crosses y = 4B or y = -iB, and that R will have a correspondingly singular behaviour. We are at 
liberty to use this device, which is adopted purely for mathematical convenience, because of the 
conservation form of (7.19), which ensures that any such singular behaviour integrates out and does 
not appear explicitly in (7.23). Other choices of P could be made: for instance one could use a 
representation based everywhere on (7.260) below, at the cost of complicating the second and third 
lines of (7.23). 
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impose a restriction on the nature of the transport, making i t  less general than what 
is implied by (7.4). We now show that, on the contrary, 

(1) the representations (7.6) and (7.10) are completely general, and can always be 
chosen to satisfy (7.7), (7.12), and the boundedness of I PI, whenever qoy 4 0 
somewhere in the central region, and 

(2) the case qoy = 0 is also covered as a limiting case of ( l ) ,  with consequences to 
be noted a t  the end of the section. 

To verify assertion (1) it is enough to exhibit just one example of a pair of functions 
P and R, which represent a given q and F through (7.6) and (7.10), and which satisfy 
the other requirements. The following example is chosen for mathematical simplicity. 
More sophisticated choices could be made, depending on the detailed profile of q,(y) ; 
this would be important if it  were desired to make the bound (7.21) and hence (7.23) 
as sharp as possible. For any qo(y)  profile for which qozl 9 0 in the central region, we 
can always find two disjoint intervals I ,  and 1, lying within that region such that 

,. 

where Ay* is the size of each interval, the sizes being taken equal for convenience, 
and where the numbers qa and qb, representing average values of qo over each interval, 
are unequal: 

Pa * qb * (7.25) 

Given any pair of functions q ( x , t )  and F(x,t) satisfying (7.3) it is clear that (7.6), 
(7.7), (7.10) and (7.12) will all hold if we choose 

and 

This immediately vindicates assertion ( l ) ,  since ( 7 . 2 6 ~ )  is bounded if condition (v) 
of 0 1.3 holds, i.e. if the range of q is bounded. 

Now consider assertion (2), regarding the limiting case in which the initial gradient 
qoy goes to zero throughout the central region. This implies that (qa-qa)+O, so that 
(7.25) fails. Two cases of interest can be distinguished. First, if I PI can be taken to 
be bounded in the limit, so that (7.21) still holds, as would be true of ordinary diffusion 
or any other gradient-dependent transport, then the first term on the right of (7.23) 
vanishes in the limit, by (5.12), and so I a ( t )  I is again bounded (and by a smaller 
amount). We note moreover that if qou vanishes throughout the entire region 
[y2-q2, y l + q 1 ] ,  then the entire right-hand side of (7.23) is zero, in this case of 
bounded 1 PI. The critical layer is then a perfect reflector for all time, in the same 
way as noted below (6.18). 

The second case of interest is where 1 PI is unbounded in the limit. This possibility 
must be reckoned with because the general form (7.4) of the vorticity transport 
permits a flux in the absence of any gradient. In  fact there is no reason why such 
a flux should not actually occur in some cases, for instance as a result of transport 
by inhomogeneous, three-dimensional (but statistically two-dimensional) turbulence, 
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leading to the creation of two-dimensional gradients in the central region where there 
were none initially. It still follows, nevertheless, that I ~ ( t )  1 is bounded, albeit no 
longer necessarily zero, if condition (v) of $1.3 holds. If we take the limit defined by 

I qoy I = O ( 4 ,  6+0 (7.27) 

so that (q,-qb) = O(S), then ( 7 . 2 6 ~ )  is O(8-l) in the same limit if the range of q is 
bounded. Thus C = O(S-l) in (7.21). But (5.12) and (6.5) show that A = O(6) so that 
the first term on the right of (7.23) is still bounded in the limit. The boundedness 
of I a(t)  I again follows. 

We thank P. H. Haynes for valuable and generous help with both the analysis and 
the numerical computations. Further assistance with the latter was kindly provided 
by J. Smith, J. Wheeler, and J. Venn. We are grateful to D. G. Andrews, P. B. Rhines 
and an anonymous referee for constructive comments. 

Appendix. The time-integrated absorptivity predicted by the SWW solution 
We now calculate the limiting value &( 00 ), say, of the dimensionless time-integrated 

absorptivity & ( r f )  implied by the SWW vorticity field 

(A 1) 

By definition, &,,( 2, Y, r f )  satisfies (2.3 1) under an initial conditionofno disturbance, 
0, = 0. Equation (2.31), it will be recalled, states that QsWw is advected by the 
leading-order velocity field, whose stream function is (2.32), i.e. 

Qsww(f, y ,  r f )  = Y+Q,(P, y, n. 

!P= %(2, Y) = -$P+cos2. (A 2) 
We may proceed from Stewartson's elliptic-function solution for QsWw or directly 

from first principles; the latter is easier. The quantity of interest is the large-time 
limit of 

as can be seen for instance by analogy with the right-hand side of (1.7). This form 
is used rather than the form found in $6 because we wish to turn to computational 
advantage the fine-grain spatial structure in 8,(2, Y, p), which develops for large 
(and which becomes infinitely fine in the limit r f +  co). Since the form (A 3) is a linear 
functional of &,(& Y, f'), the fine-grain structure will average out, more and more 
accurately as r f +  co . 

Regarding the use of (A 3), it  is important to note that, in order for the double 
integral to be equal to the time-integrated Reynolds-stress jump ( l . i ) ,  the 
P-integration must be performed before letting the limits of the Y-integration tend 
to infinity. This can be seen by referring again to the analogy with (1.7). Provided 
that the P integration is performed first, the manipulations go through in exactly the 
same way as in (1.7), since averaging the integrands with respect to f makes them 
small enough at large I Y I, as we shall see shortly, for the Y integration by parts to 
be valid and the Y integration in (A 3) convergent. To show that the integrated term 
vanishes when I Yl+co i t  is convenient to use (2.33), (5.18), (6.7), (6.8) and (6.14) 
together with the &averaged &momentum equation and the fact that the conserved 
densi tyA=gqe=O(Y-a)asI  YI-tco. 

Now consider the ribbon-like region R( Y, 6!P) lying between two neighbouring 
streamlines of (A 2) having the values Y and Y+ 8Y, where 8Y is small but fixed 
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as p+ co . On each streamline within R, the time for a fluid element to travel through 
one period of the streamline pattern varies continuously across R because of the basic 
shear. Consequently, after a sufficiently long time - the smaller the value of 6Y, the 
longer the time required - the value of Q,,, averaged across R, at any given P, will 
tend to the area average of QsWw over the whole ribbon R. Call this average OR( Y). 
As the notation indicates, i t  is a function of Y alone. Once QR( Y) has been calculated, 
we can evaluate B( 00)  by substituting 

&R{ y(P, y)}- (A 4) 

for 8, in (A3).  This amounts to using in place of the actual vorticity field 
Qsww(Z, Y ,  p) a vorticity field from which the (infinitely) fine limiting structure has 
been averaged out. This procedure is justifiable because the other factor Y in the 
integrand of (A 3) is a smooth function. 

We note that the implied limiting process is not uniform as the centre (2, Y) = (0,O) 
of the cat's eye is approached. For any finite p, no matter how large, there is always 
some neighbourhood No of (0,O) within which the local strain rate is so small that 
the absolute vorticity contours are rotated but not significantly sheared. However, 
the area of No shrinks to  zero as Ifi+ 00. Therefore, since Q, is bounded in magnitude, 
No contributes nothing to (A 3) in the large-time limit. (No has dimensions O ( p f )  
in both the P- and Y-directions. It is this, incidentally, that gives rise to the O(p-2) 
behaviour of [m] mentioned in Q 1.1,  as can be seen by considering the contribution 
from No to the integral (2.35).) 

Outside the cat's eyes ( -  co < Y < - i ) ,  &,( Y )  can be evaluated from the initial 
condition as 

where Y is regarded as a function of P and Y as defined by (A 2 ) .  Differentiating (A 2 )  
at constant P, we have 

a y  -1 

a'y= (3 = - Y-1 = -{2(cosP- Y ) } - f ,  

Therefore the numerator of (A 5 )  is just - 2 x ,  and the denominator is recognizable 
as -2mf times the first complete elliptic integral 

in the notation of Abramowitz & Stegun (1965,17.3.1). Hence, outside the cat's eyes, 

Q,( Y) = A xm-f { K ( m ) } - l ,  (A 10) 

where the sign is chosen to  make oR{Y(P, Y ) }  an odd function of Y ,  positive when 
Y is positive. Inside the cat's eyes ( -  1 < Y < 1),  OR( vl) is zero, by symmetry, 
because each ribbon R( Y,  6 Y) is a closed loop symmetrical about the Z-axis. 
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Using symmetry to get rid of the lower half of the range of Y-integration in (A 3), 
and making the substitution (A 4), we now have 

&(a) = -- x 

- - -- I Jm d Y  I' dP Y("H!l-m)- Y). 
x o  -ll msK(m) 

Here H(l -m)  defined to be 1 when m < 1, i.e. outside the cat's eyes, and 0 when 
m > 1, i.e. inside the cat's eyes. The &integration is to be carried out at fixed Y (and 
not, it should be noted, at fixed !P) ; and 

Also 

2 
m = m(2, Y) = 

1 - Y(D, Y) 

N 4YP2+0( Y-4) as Y+m. 

1-COSD 
m-t=fY ( y "  1+ +o(Y-~)) as ~ + m .  

We note from (A 9) that 

K(m) = fx{l +$+O(m2)} as m+O 

=@{1+ Y-2+O(Y-4)} as Y+m. 

Thus (for Y > 0), 

Y&( !P) L x Ym*{K(m)}-l 

+o( Y-4) > {  1 --+o( i Y-4) 1 . 1-COSD 
=y"( l+  y" 

We see from this that the integrand of (A 11) is O( Y-?-) after averaging with respect 
to D, which verifies that the Y-integration is then convergent. 

The rest is routine calculation. We find from (A 11) that 

cos30 do, (A 16) x 

where E(m) is the second complete elliptic integral 

E(m) = (1-m sin2B)td0 Jo+ 
in the notation of Abramowitz t Stegun (1965, 17.3.3). The second integral in (A 16) 
has the value %; the first was evaluated numerically and found to be equal to 
-0.10278. Thus 

(A 18) 
32 

&(a) = 8~0.10278+-~0.66667 = 3.0858, 
3x 

of which the dimensional equivalent is (1.2). The first term is the contribution to 
(A 11) from outside the cat's eyes, and the second term the contribution from within 
them. 
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P. H. Haynes (personal communication) has derived the following alternative 
expression for a( 03 ) : 

Numerical evaluation of this expression confirms the value 3.0858, which provides 
an excellent check on the original computation from (A 16). 
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